Atlas of Connectivity Maps

Ali Mahdavi Amiri*, Faramarz Samavati*

*University of Calgary

Abstract

Semiregular models are now ubiquitous in computer graphics. These models are constructed by refining a model with an arbitrary initial connectivity. Due to the regularity enforced by the refinement, the vertices of semiregular models are mostly regular. To benefit from this regularity, it is desirable to have a data structure specifically designed for such models. We discuss how to design such a data structure, which we call the atlas of connectivity maps (ACM) for semiregular models. In an ACM, semiregular models are divided into regular patches. The connectivity between is captured at the coarsest resolution. In this paper, we discuss how to find these patches in a given semiregular model and how to set up the ACM. We also show some of the benefits of this data structure in applications such as the multiresolution framework. ACM can support a variety of different multiresolution frameworks including compact and smooth reverse subdivision methods. The efficiency of ACM is also compared with a standard implementation of half-edge.

1. Introduction

Semiregular models are very common in computer graphics [1]. These models are obtained by applying repetitive refinement on an arbitrary initial mesh or they may be constructed by a parametrization method (Figure 1). Applying refinement on a mesh produces a large large number of vertices. However, these vertices are mostly regular, with irregular vertices corresponding to extra-ordinary vertices of the initial unrefined model. This regular structure should be taken into consideration in order to efficiently capture the connectivity information of the model. Additionally, the geometry of the vertices (coming from sources such as subdivision schemes, projections, parametrization) should also be recorded.

In [2], we introduce ACM: Atlas of Connectivity Maps to efficiently capture the connectivity between the regular patches of a semiregular model. These patches, which can be obtained from an arbitrary refinement, are mapped onto a set of quadrilateral 2D domains. The connections between vertices and faces are captured by these 2D domains (connectivity maps) and their interconnections. The ACM can be used as an efficient data structure for semiregular meshes to handle connectivity queries.

In ACM, a coordinate system is assigned to each connectivity map such that each vertex has integer coordinates. These integer coordinates are used to index the faces and vertices and handle neighborhood queries. A hierarchical relationship exist between connectivity of vertices and faces at various resolutions. To establish this hierarchical relationship, we apply rotation, translation, and/or scaling to transform the coordinate system of one resolution to another. The vertices’ 3D coordinates are stored in 2D arrays associated with each connectivity map coordinates.

We also categorize regular refinements for quad meshes, and for each category, we propose methods to handle adjacency and hierarchical queries using our data structure. We then describe how to support triangle meshes and discuss applications such as subdivision and multiresolution.

In this paper, we extend our previous work [2] in several different ways. In [2], we describe how to set up an ACM for an initial coarse mesh with arbitrary connec-
tivity. We then make the semiregular model by applying regular refinements on the initial coarse mesh. Here, we present how to set up an ACM for a given semiregular mesh and associate a connectivity map with each regular patch of the mesh. We also describe how to handle sharp features such as creases and corners.

One of the immediate applications of the ACM is the support of meshes resulting from different subdivision methods. In [2], we note that ACM is efficient both in terms of space and time at supporting connectivity queries of subdivision surfaces. A multiresolution framework, which allows one to transition between the high and low resolution versions of a model without losing details, can be developed by pairing subdivision with its reverse subdivision scheme. The ACM can also be efficiently used to support multiresolution frameworks.

In [2], we describe how to support Catmull-Clark, Loop, and $\sqrt[2]{3}$ reverse subdivision. Here, we extend it to support $\sqrt[3]{2}$ reverse subdivision. In addition, supporting the recently developed "smooth reverse subdivision" multiresolution framework is also presented. We also provide the filters for reverse $\sqrt[2]{2}$ and $\sqrt[3]{3}$ reverse and smooth reverse subdivision.

We have compared the time and space efficiency of our data structure with alternatives in [2]. The half-edge data structure used for our comparison in [2] was implemented by ourselves and was not based on a standard implementation. Here, we report the speed of the half-edge data structure implemented in CGAL to make a comparison with a standard implementation of the half-edge data structure [3].

We organize the paper as follows: in Section 2 some related work is presented. We provide an overview and a detailed description of the ACM in Section 3. A method is provided in Section 4 to adapt the ACM to a given high resolution semiregular model. A representation for sharp features in the ACM is described in Section 5. In Section 6, an efficient technique for multiresolution representations for Catmull-Clark, Loop, $\sqrt[2]{2}$, and $\sqrt[3]{3}$ is proposed. We also describe how to handle smooth reverse subdivision using the ACM. We compare our work with CGAL as an efficient implementation of half-edge in Section 7. Future work and limitations are presented in Section 8 and we conclude in Section 9. We also provide the filters of $\sqrt[2]{2}$ and $\sqrt[3]{3}$ compact reverse subdivision in Appendix A, and Appendix B and the filters of smooth reverse $\sqrt[2]{2}$ and $\sqrt[3]{3}$ subdivision in Appendix C.

2. Related Work

Data structures for semiregular models can be found primarily in literature related to subdivision and multiresolution. We present work related to our proposed method, divided into two categories: subdivision and multiresolution.

Subdivision: Subdivision is a well-studied subject in computer graphics. There are many subdivision schemes, such as Loop, Catmull-Clark, Doo-Sabin, $\sqrt[2]{2}$ and $\sqrt[3]{3}$ subdivision [4, 5, 6, 7, 8]. Subdivision is typically a two-step process: one step of refinement followed by an averaging step. The relationship between lattices at different resolutions resulting from different types of refinement has been previously classified in [9, 10]. Our categorization of refinements is similar to their work. However, we have classified subdivision to assist in designing an efficient data structure to address connectivity queries on an arbitrary connectivity model.

The half-edge data structure and its variations are commonly used to model subdivision surfaces [11]. These data structures are designed for general topological objects’ adjacency queries. However, the half-edge data structure cannot be directly used for hierarchical access. Furthermore, it does not benefit from the regularity of subdivision and, therefore, for objects with a large number of vertices it becomes inefficient.

An alternative data structure that supports hierarchical operations is the quadtree [12]. Quadtrees are commonly used for hierarchical meshes, particularly for hierarchical editing applications [13]. Although quadtrees are quite effective at supporting hierarchy between resolutions, they need to store many pointers to maintain their nodes’ conductivities and hierarchical dependencies. To overcome this inefficiency, indexing methods exist which assign a unique index to every node and discard the tree structure [12]. However, these indexing methods are primarily designed to support hierarchy and ignore adjacency relationships. Moreover, since quadtrees are designed to support 1-to-4 refinement, they cannot be directly used to support other refinements.

Patch-based refinement methods rely on data structures that are specifically designed for subdivision methods [14, 15, 16, 17, 18]. Here, meshes are divided into patches and subdivision is separately applied to each patch. Each patch is stored in an array and the connectivity between the patches’ boundaries is handled using repetitive points at the boundary edges or a first resolution edge based data structure. These methods are mostly designed for a specific type of refinement or primitive shapes [15, 18]. Some of these data structures
use spiral 1D indexing for vertices [16, 17]. Spiral indexing complicates neighborhood access, especially for non-immediate neighbors that are essential for applications like multiresolution. We instead use simple 2D domains to maintain connectivity information and extend patch-based methods to support all types of refinement.

Multiresolution: While subdivision generates high resolution objects, multiresolution provides a means to transition from high to low resolution and vice versa [19]. Some multiresolution frameworks, though not all, maintain the semiregularity of objects. This can be achieved by reversing the process of subdivision (i.e. via a reverse subdivision process) [20, 21, 22] or by considering a property of the coarse vertices, such as smoothness (computed via the Laplacian) [13]. Since both the Laplacian and reverse subdivision use local operators to coarsely sample the fine model, our proposed method can handle these operations.

Olsen et al. [20, 21] provide a compact multiresolution framework using the concept of even/odd vertices. At different resolutions, the even/odd labeling distinguishes multiresolution details from coarse vertices. They use an edge based data structure to handle connectivity queries and a hashing method to map vertices to details or coarse vertices [23]. To show that our ACM can efficiently support multiresolution frameworks, we describe how to support the compact multiresolution proposed in [20, 21] and compare the speed of our data structure with [23].

To adapt the half-edge structure to multiresolution frameworks, Kraemer et al. [24] modify this data structure by defining sequences of half-edges. Using this multiresolution half-edge structure, it is possible to support primal and dual schemes. However, this data structure requires a large amount of memory for high resolution models due to the storing of all edges and an extensive amount of time is needed to update the structure after each refinement. By comparison, our method, saves a significant amount of memory and time.

3. ACM Description

In this section, we first provide an overview of ACM and describe the basic ideas behind this method. Afterwards, we give a detailed description of ACM as well as the essential elements of each connectivity map. In the detailed description, formal mathematical notation is used to describe the method.

3.1. Overview of ACM

A semiregular model is made of a number of regular patches connected to each other. The connectivity of each patch can be captured easily by a simple 2D domain with a 2D indexing method and then the geometry of vertices can be recorded in a 2D array. The indices of the vertices can be based on a simple Cartesian coordinate system assigned to each 2D domain. While connectivity queries between the vertices internal to each patch are handled by simple neighborhood vectors, a transformation is used to traverse from one patch to another. These simple 2D domains and their interconnections can be maintained through the resolutions (for all types of refinements) by applying a transformation (imposed by the refinement) to the coordinate system of each 2D domain. In the following section, we formally describe how to set up these 2D domains and the essential transformations for a variety of refinements.

3.2. Detailed Description

As mentioned earlier, semiregular meshes consist of/are made of connected regular patches (Figure 2). Each regular patch in an ACM is assigned a simple 2D domain, this 2D domain and its connectivity information in a mesh is called connectivity map (CM(i)). For CM(i), a 2D coordinate system is used to index vertices. An index (i, j), refers to a 2D location array that stores the 3D positions of vertices at resolution r. Connectivity queries for vertices falling in CM(i) are handled using vectors called neighborhood vectors. By adding simple vectors to the index of a vertex, its neighbors are found.

Figure 2 (c) illustrates the indexing method for vertices and the use of neighborhood vectors (1, 0), (−1, 0), (0, 1), and (0, −1) to connect a vertex to its neighbors.

![Figure 2: (a) A semiregular mesh. (b) For each patch a 2D domain (connectivity map) with a coordinate system is assigned. It is possible to move from one patch to another by mapping the coordinate systems of two adjacent connectivity maps. (c) The coordinate system of each connectivity map is used to index vertices. Neighbors of vertices are found using neighborhood vectors.](image)

To record the connectivity of the entire model, CM(i) records the adjacency information of its neighboring connectivity maps CM(N(i)). To access CM(N(i)) from CM(i), we use a transformation mapping the coordinate
Table 1: T_{ref} and T_{int} for different refinements and subdivision methods. S, T, and R denote scaling, translation, and rotation. Subscripts $e \rightarrow o$ and $e \rightarrow o$ denote transitions from even to odd and odd to even resolutions.

<table>
<thead>
<tr>
<th>Refinement</th>
<th>Subdivision</th>
<th>T_{ref}</th>
<th>T_{int}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-to-4</td>
<td>Catmull-Clark</td>
<td>$S\left(\frac{1}{2}\right)$</td>
<td>$S\left(2\right)$</td>
</tr>
<tr>
<td>1-to-4</td>
<td>Doo-Sabin</td>
<td>$S\left(\frac{1}{4},\frac{1}{2}\right)$</td>
<td>$S\left(2\right)(\frac{1}{2},\frac{1}{2})$</td>
</tr>
<tr>
<td>1-to-2</td>
<td>$\sqrt{2}E_{e \rightarrow o}$</td>
<td>$S\left(\frac{1}{4}\right)R\left(\frac{\pi}{4}\right)$</td>
<td>$S\left(2\right)$</td>
</tr>
<tr>
<td>1-to-2</td>
<td>2 Simplest,$_{e \rightarrow o}$</td>
<td>$S\left(\frac{1}{2}\right)R\left(\frac{\pi}{4}\right)T\left(\frac{1}{2},\frac{1}{2}\right)$</td>
<td>$T\left(\frac{1}{2},\frac{1}{2}\right)$</td>
</tr>
</tbody>
</table>

As we discussed earlier, the neighbors of a vertex in a connectivity map $CM(i)$ are found using vectors called neighborhood vectors defined in the coordinate system of $CM(i)$. Since, after refinement, the connectivity of the vertices are affected by both transformations T_{ref} and T_{int}, the neighborhood vectors are changed by $T_{ref} \circ T_{int}$ in a transition from one resolution to another. For example, $T_{ref} \circ T_{int} = I$ in 1-to-4 refinement. As a result, the neighborhood vectors are the same after applying 1-to-4 refinement (Figure 6).

Each patch of a semiregular model can be treated as a bounded lattice. As studied in [10], when a refinement is applied on a lattice, the resulting lattice is transformed by the refinement.

For example, the 1-to-4 refinement used in Catmull-Clark subdivision imposes a scaling by $\frac{1}{2}$ on the lattice at the next resolution (Figure 4). We call this transformation T_{ref} (Figure 5(b)). To convert these scaled coordinates to integer coordinates, which are necessary to refer to the 2D location array, we apply another transformation called T_{int} (Figure 5(c)).

![Figure 4: Applying Catmull-Clark subdivision on a refined cube.](image)

![Figure 5: (a) a quad before refinement. (b) 1-to-4 refinement imposes a scaling by $\frac{1}{2}$ called T_{ref}. (c) T_{int} which is an scaling by two is applied to get integer coordinates. (d) Red and black lattices are the connectivity lattices before and after 1-to-4 refinement, respectively.](image)

![Figure 6: Neighborhood vectors at two successive resolutions of 1-to-4 refinement.](image)
ture of the ACM. As illustrated in Figure 5(d), since the lattice is only scaled by the refinement, 1-to-4 refinement falls in the category of "Scaling, No Rotation, No Translation". In [2], we have discussed three more categories: "Scaling, Rotation, No Translation", "Scaling, No Rotation, Translation", and "Scaling, Rotation, Translation". For each category, we first find T_{ref} by looking at the lattices at two successive resolutions and then define T_{int} to obtain integer indices. Table 1 presents the transformations T_{ref} and T_{int} for different subdivision schemes. The 1-to-2 refinements used for $\sqrt{2}$ and simplest subdivision and the 1-to-4 refinement used by Doo-Sabin subdivision are presented in Figure 7. The result of these subdivision schemes on a refined cube and lattices of their refinements at two successive resolutions are also illustrated in Figure 8. Further discussion of each category is presented in [2].

The ACM can be easily extended to triangular meshes by pairing connected triangles. We can assign a connectivity map to each triangle pair and treat it as a quad, allowing us to continue using quadrilateral connectivity map domains (Figure 9 (a)).

In order to create such a domain, we can pair adjacent triangles to form a quad, creating a single connectivity map. Suppose that we have a set of faces $F = \{f_1, f_2, \ldots, f_M\}$, we can pair f_i with f_j if f_i and f_j are adjacent. Afterwards, both f_i and f_j are removed from F and the process repeats until no adjacent faces exist in F.

A complete pairing of triangles is possible and is computable in $O(M \log^4 M)$, where M is the number of triangles [26, 27]. Triangles in F that remain unassigned to a pair (isolated triangles) may each be assigned to a half-empty connectivity map. As a result, isolated triangles can be handled without compromising the data structure (Figure 10). However, for the purposes of efficiency, it is better to reduce the number of isolated triangles by using methods that can make a pure quad mesh from a given triangular one [27, 28].

Similar to quad meshes, various refinement methods can be supported by ACM for triangular meshes. For example, Figure 11 illustrates the result of Loop subdivision, which uses a 1-to-4 refinement, on Venus and Figure 10 illustrates the result of $\sqrt{3}$ subdivision with 1-to-3 refinement on a pawn. Each connectivity map is colored differently.

4. Connectivity Maps Identification

In [2], we describe how to build an atlas of connectivity maps by assigning a connectivity map to each quad or triangle pair at the coarse resolution, from which finer
Let \(v_0 \) be an extraordinary vertex. \(v_0 \) is considered to be the corner of a connectivity map. Given a face \(f \), two directions \(i \) and \(j \) are defined based on the two edges incident to \(v_0 \) in \(f \). We consider two pointers moving along \(i \) and \(j \) called \(\text{count}_i \) and \(\text{count}_j \), illustrated with green and pink arrows in Figure 12. \(\text{count}_i \) and \(\text{count}_j \) start from \(v_0 \) and move along both directions simultaneously until another irregular vertex \(v_1 \) is met. The quadrilateral patch along \(i \) and \(j \) including \(v_0 \) and \(v_1 \) is stored as a connectivity map and removed from \(M \). The process is repeated until no face remains in \(M \).

Consider face \(f \) including vertices \(w_0, w_1, w_2, \) and \(w_3 \) in which \(w_0 \) is extraordinary (Figure 13 (a)). In \(f \), \(e_0 \) connects \(w_0 \) to \(w_1 \) and \(e_1 \) connects \(w_1 \) to \(w_2 \). We consider the direction of \(e_0 \) to be direction \(i \) in \(f \) and \(\text{count}_i \) needs to move along \(i \) starting at \(w_0 \). Let traverse \((f, w_i, e_i) = (f_i, e_i) \) where \(f_i \) shares \(e_i \) with \(f \) and \(e_i \) \(\neq \) \(e_1 \) is an edge in \(f_i \) incident to \(v_1 \). We determine traverse \((f, w_i, e_1) = (f_i, e_1) \) and take the direction of \(e_1 \) to be direction \(i \) in face \(f_i \). The process repeats for \(\text{count}_i \) starting at \(w_1 \) and face \(f_i \) in the direction of \(e_i \).

Given a triangular mesh, we should slightly modify the algorithm. Consider \(w_0 \) to be an extraordinary vertex in face \(f \) including vertices \(\{w_0, w_1, w_2\} \). The edges \(e_0 \) and \(e_1 \) incident to \(w_0 \) in \(f \) are found. Then, we determine traverse \((f, w_1, e_1) = (f_i, e_1) \) and traverse \((f, w_3, e_1) = (f_j, e_j) \). The direction of \(e_1 \) is taken to be direction \(i \) in \(f_j \), \(\text{count}_i \) is assigned to \(w_1 \) in \(f_j \), and the process repeats. \(\text{count}_i \) and \(\text{count}_j \) simultaneously move \(k \) steps until another extraordinary vertex \(w_k \) is met. The \(k \times k \)
quadrilateral section including w_0 and w_k along $count_i$ and $count_j$ is considered to be a patch. After finding a patch and assigning a connectivity map to it, the i and j directions together define the coordinate system of the connectivity map. The vertex locations, the transformations mapping the coordinate system of a connectivity map to its neighbors and the connectivity maps neighboring each corner are stored in separate arrays.

It is possible for a patch to be identified that includes more than one connectivity map. To be consistent with the structure of the ACM, we find the smallest connectivity map and split the bigger connectivity maps into connectivity maps with equal dimensions. For instance, if there exists a 16×16 connectivity map but mesh M has a 4×4 connectivity map, the 16×16 connectivity map is split into four 4×4 connectivity maps.

This algorithm, as described, is for the 1-to-4 refinement used in Catmull-Clark or Loop subdivision. Other refinements such as the 1-to-2 and 1-to-3 refinements used in $\sqrt{2}$ and $\sqrt{3}$ subdivision, respectively, are handled exactly the same. For some other refinements, we may slightly modify the process. For example, for the 1-to-4 refinement used in Doo-Sabin subdivision, we start from the vertices of a non-quad face and move along the quad faces until another non-quad face is met. As a result, we need to know which refinement method the given mesh has had applied.

The proposed algorithm is not only very simple but it is also very efficient in terms of speed. Table 2 reports the time needed to set up an ACM for high resolution semiregular models with different numbers of faces. These models are also illustrated in Figure 14. We have only used face-list vertex-list of a model to adapt ACM to a given semiregular mesh since we only need to traverse from one face to another and find extraordinary vertices.

Table 2: Time (in seconds) required to set up an ACM for different models.

<table>
<thead>
<tr>
<th>Model</th>
<th># of Faces</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teddy</td>
<td>1028</td>
<td>1.81</td>
</tr>
<tr>
<td>Bullet</td>
<td>1536</td>
<td>0.45</td>
</tr>
<tr>
<td>Dog</td>
<td>2592</td>
<td>3.43</td>
</tr>
<tr>
<td>Seat</td>
<td>1152</td>
<td>0.32</td>
</tr>
<tr>
<td>Pawn</td>
<td>912</td>
<td>0.26</td>
</tr>
</tbody>
</table>

5. Sharp Features

Many realistic objects have sharp features such as creases and corners. Subdivision methods handle sharp features by treating some vertices and edges differently along the creases or corners [32, 33].

To support creases, some edges are initially tagged as sharp edges. Then, at each subdivision iteration, the edges resulting from the initial sharp edges are tagged as sharp and they are subdivided using curve subdivision masks [33].

Here, the main task is to find the edges resulting from iterative subdivision on a sharp edge. This hierarchical task can be addressed efficiently in the ACM. The main questions are how to represent an edge and how to find the resulting edges after subdivision. In the ACM, an edge can be represented by a pair of vertices. Since these two vertices have indices in the ACM, they can be used to handle the task of hierarchically determining all edges produced by the refinement of a sharp edge. For example, if an edge connecting vertices $v_r = (a, b)_r$ and $w_r = (a + 1, b)_r$ is considered to be sharp, all vertices with index $(c, 2^n b), a \leq c \leq a + 2^n$, are considered to be sharp at the n resolution after 1-to-4 refinement. As a result, iteratively tagging sharp edges at intermediate resolutions is unnecessary and a tagging at the coarsest resolution is enough. We can also use this method to apply semi-smooth masks on boundary edges. A semi-smooth mask (boundary mask) must be applied on the boundary edge of any connectivity map with a null neighbor.

This is also extendible to other types of refinement. For example, the boundary and sharp edges are stationary at odd resolutions of $\sqrt{3}$ subdivision, hence we apply a curve subdivision scheme to the corresponding vertices at every other resolution. That is, vertices with
index \((c, 3^n b)_{r+2a}, a \leq c \leq a + 3^n\) are modified when an edge connecting vertices \(v_r = (a, b)\) and \(w_r = (a + 1, b)\), is considered to be sharp. Figure 15 illustrates some results with sharp features and boundary edges.

6. Multiresolution

The multiresolution representation of a mesh consists of a simple base mesh and a sequence of wavelet coefficients called detail vectors at various resolutions [34]. This representation provides a framework in which it is possible to traverse between the levels of detail/resolutions of a mesh. While subdivision methods are used to create high resolution objects, reverse subdivision can be used to decompose the high resolution model to a low resolution version along with the details lost in the process (wavelet coefficients) [35, 36]. In this multiresolution framework, it is possible to define a compact representation in which the storage requirements for the details and coarse vertices together equal the storage requirement of the fine vertices. As noted earlier, Olsen et al. [20] provides such a compact multiresolution. They categorize vertices into even and odd vertices, with even vertices storing coarse vertex locations and odd vertices storing multiresolution details after reverse subdivision. For example, the vertex-vertices and edge-vertices of Loop reverse subdivision are respectively labeled as even and odd (see Figure 16). The details of an even vertex, therefore, are found using a linear combination of odd details in its neighborhood.

Taking advantage of this even/odd partitioning of vertices could potentially help in creating a data structure. One possibility is to use an edge-based data structure with an additional structure such as a hash table to encode even and odd vertices [23]. However, the ACM can be used as an efficient data structure for this type of multiresolution. In ACM, since each vertex has a 2D index, this index can be used to distinguish between vertices and support a partitioning of the vertices. There exists a variety of multiresolution frameworks that impose a similar partitioning of vertices with different geometrical properties [37, 38]. Due to the possibility of categorization of vertices using their indices, it is also possible to efficiently support these methods.

In this section, we first describe our proposed data structure for compact multiresolution frameworks based on Catmull-Clark, Loop, \(\sqrt{3}\), and \(\sqrt{2}\) reverse subdivision. We then describe smooth reverse subdivision in this section, which has been proposed to reduce the coarsening effects of compact multiresolution frameworks. Each of these multiresolution frameworks are expressed by geometric masks indicating the contributions of neighboring vertices to the final position of the coarse vertices or details. The masks of smooth reverse subdivision for Loop and Catmull-Clark have been provided in [37]. We also provide masks for \(\sqrt{3}\) and \(\sqrt{2}\) smooth reverse subdivision in Appendix C.

Catmull-Clark: The reverse schemes of Catmull-Clark and Loop subdivision are respectively introduced in [21] and [20]. Here, we discuss how to access the neighbors of a coarse vertex and its corresponding details, which are essential operations in the reconstruc-
tion process.

When Catmull-Clark reverse subdivision is applied on a semiregular mesh, vertex-vertices are replaced by coarse approximations and face-vertices and edge-vertices are replaced by details. In the even/odd categorization, vertex-vertices are tagged as even and face-vertices and edge-vertices are tagged as odd. This categorization can be easily supported in ACM. A vertex with index \((a, b)\), is replaced by a coarse approximation at resolution \(r - 1\) if \(a\) and \(b\) are both even, otherwise it is replaced by a detail.

This representation of vertices can be extended to several levels of reverse subdivision by using the mentioned hierarchical relationships. As a result, vertices with indices \((a, b)\), after \(n\) levels of reverse subdivision are coarse vertices if \(\left\lfloor \frac{a}{2^n}\right\rfloor = \frac{a}{2^n}\) and their corresponding details are located at \((c, d)\), if \(\left\lfloor \frac{c}{2^n}\right\rfloor = \frac{a}{2^n}\). Figure 17 illustrates the application of Catmull-Clark reverse subdivision to a connectivity map. To access the neighbors of a coarse vertex and its corresponding details, scaled neighborhood vectors are used. The structure of the neighborhood vectors remains the same as in Figure 2 but they are scaled by \(2^n\) (after \(n\) levels of reverse subdivision) to access the neighbors of a coarse vertex and \(2^{n-1}\) to access the corresponding details (Figure 17).

![Figure 17: A subdivided connectivity map after two levels of reverse subdivision.](image)

Loop: In Loop reverse subdivision, edge-vertices are replaced by details and vertex-vertices are replaced by coarse approximations [20]. Since Loop subdivision uses a 1-to-4 refinement similar to Catmull-Clark subdivision, the categorization of vertices is very similar to Catmull-Clark reverse subdivision. However, different neighborhood vectors, as illustrated in Figure 9, are used. Figure 18 illustrates the application of Loop reverse subdivision to a connectivity map and Figure 19 illustrates a semiregular Venus and its reverse subdivision at three resolutions.

\(\sqrt{3}\) subdivision: In \(\sqrt{3}\) subdivision, the connectivity of the vertices is affected by the 1-to-3 refinement. At each step, a face-vertex is inserted in each face and edges are flipped (see Figure 20).

\(\sqrt{3}\) reverse subdivision can be also determined using a similar method to that proposed in [20]. In this case, face-vertices are replaced by details and vertex-vertices by coarse approximations (see Figure 21). More discussion and the masks of \(\sqrt{3}\) reverse subdivision in a compact multiresolution framework have been provided in Appendix A.

Handling adjacency queries in \(\sqrt{3}\) reverse subdivision is again very straightforward using neighborhood vectors with a scaling factor of three. To access details and coarse vertices, the transformations \(T_{e-np}\) and \(T_{o-np}\) discussed in [2] are used to change the neighborhood vectors as illustrated in Figure 22.

\(\sqrt{2}\) subdivision: In the 1-to-2 refinement of \(\sqrt{2}\) subdivision, face-vertices are inserted in each face and connected to vertex-vertices and the previous edges are removed (see Figure 7). In \(\sqrt{2}\) reverse subdivision, face-vertices are replaced by details and vertex-vertices are
Smooth Reverse Subdivision: Note that in compact reverse subdivision, in which a local refinement is applied on the resulting coarse approximations, unwanted exaggerations of the mesh often appear, which we wish to reduce (see Figure 24). Sadeghi and Samavati have proposed a method in which they consider the smoothness of the coarse mesh by perturbing coarse vertices using a Laplacian constraint [37]. Using a modified Laplacian [38], a compact representation can be found for the multi-resolution framework presented in [37]. However, here, we would like to explore how to handle multi-resolution frameworks with over-representation such as those found in [37] or [13].
olution framework proposed in [13]. The connectivity structure of this framework is the same as [37]. The only difference is that in [13], coarse approximations are found by down-sampling the fine points instead of applying reverse subdivision masks.

Sadeghi and Samavati recently modified the smooth reverse subdivision framework by introducing a fairing technique with banded inverse [38]. They replaced the discrete Laplacian operator in the smooth reverse subdivision framework with this new fairing technique. This technique has two steps. First, to smooth vertex \(v \), it is perturbed along its Laplacian vector towards the average \(M \) of its neighbor vertices. To do so, vertices in the neighborhood of \(v \) are fixed and \(v \) alone is moved to \(w \) in which \(w = \alpha v + (1 - \alpha) M \) (see Figure 26(a)). In the next step, all vertices connected to \(v \) are moved similarly. As a result, the vertices of a mesh faired in this manner must be partitioned into two disjoint sets, red and green, in which no vertex in either the red or green set has a neighbor in its own set.

![Figure 26](image)

Figure 26: (a) \(v \) is moved along the vector connecting \(v \) to \(M \). \(M \) is the average of vertices \(N_i \) in the neighborhood of \(v \). (b) Green and red vertices in a connectivity map.

As mentioned in [38], the meshes resulting from Catmull-Clark subdivision have this property since the vertices can be partitioned into edge-vertices (red) and face- and vertex-vertices (green) (see Figure 26). The ACM can provide a simple distinction for the red and green sets in meshes resulting from Catmull-Clark subdivision. Any vertex with index \((a, b)\), in which either \(a \) or \(b \) is even (not both simultaneously) is an edge vertex and falls in the red set and all other vertices are in the green set. Figure 26(b) shows the coloring of a connectivity map and Figure 27 illustrates the result of fairing on a mesh resulting from Catmull-Clark subdivision. As a result, using the ACM, we can partition Catmull-Clark meshes into two disjoint sets without any additional tagging and apply the fairing method proposed in [38].

7. Comparison with CGAL

We have compared the ACM with our lab implementation of half-edge data structure in [2]. Here, for implementing subdivision surfaces, we compare the performance of ACM with CGAL [3]. We report the CPU time usage of half-edge in comparison with the ACM. The ACM remains far more efficient than half-edge for subdividing meshes even against the CGAL implementation, which is one of the most efficient half-edge implementations available. In Table 3, it is apparent that the ACM CPU time usage is much more efficient than CGAL. Tests were run on an intel i7 quad core processor under Windows 7.

<table>
<thead>
<tr>
<th>Resolution</th>
<th>#of Faces</th>
<th>ACM</th>
<th>CGAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8748</td>
<td>0.009</td>
<td>0.092</td>
</tr>
<tr>
<td>8</td>
<td>26244</td>
<td>0.015</td>
<td>0.181</td>
</tr>
<tr>
<td>9</td>
<td>78732</td>
<td>0.063</td>
<td>0.701</td>
</tr>
<tr>
<td>10</td>
<td>236196</td>
<td>0.109</td>
<td>2.20</td>
</tr>
<tr>
<td>11</td>
<td>708588</td>
<td>0.975</td>
<td>6.810</td>
</tr>
</tbody>
</table>

In Table 4, we again compare the ACM with CGAL to subdivide a cube using Doo-Sabin subdivision to show the efficiency of the ACM for quadrilateral meshes. To reach resolution seven, the ACM needs only 0.024 seconds while CGAL needs about two minutes. The reason for this difference is that the half-edge structure needs to maintain many pointers to capture the connectivity information of vertices. However, in the ACM, the connectivity of faces, vertices and edges is implicit in each connectivity map and handled using simple algebraic operations.

8. Future work and limitations

The ACM provides an efficient data structure for semiregular models. However, there exist meshes
whose vertices are mostly regular but do not have subdivision connectivity, such as meshes resulting from adaptive subdivision [39, 40]. Although it is possible to subdivide one connectivity map more than others, irregular usage of adaptive subdivision makes meshes which are not compatible with ACM. As potential future work, it would be interesting to consider modifications to the ACM to support such meshes. We have described how to handle connectivity queries for triangular and quadrilateral meshes. Hexagonal meshes and their refinements may also be supported by the ACM [41]. Supporting hexagonal meshes presents another direction for future work for our proposed method.

9. Conclusion

We have described the ACM (Atlas of Connectivity Maps) and have shown that it can be efficiently used for a variety of semiregular meshes and adjacency queries on them, including quadrilateral or triangular models refined with different methods. Establishing the ACM at a coarse resolution is described as well as a method to adapt the ACM for a given high resolution semiregular model. Supporting sharp features (creases and corners) in subdivision surfaces is also described. We have emphasized the applications of the ACM to multiresolution frameworks by discussing how to support various multiresolution frameworks. We also compared our proposed ACM with half-edge implemented in CGAL to show the speed efficiency of the ACM in handling connectivity queries in subdivision surfaces.

Acknowledgments

We would like to thank anonymous reviewers for their thoughtful comments in the review process. We also thank Troy Alderson for insightful discussions and editorial comments. This research was supported in part by the National Science and Engineering Research Council of Canada and GRAND Net-work of Centre of Excellence of Canada.

Table 4: Doo-Sabin subdivision time (in seconds) required by the ACM and CGAL for a cube to reach resolution / from resolution i – 1.

<table>
<thead>
<tr>
<th>Resolution</th>
<th>#of Faces</th>
<th>ACM</th>
<th>CGAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>116</td>
<td>0.011</td>
<td>0.015</td>
</tr>
<tr>
<td>4</td>
<td>404</td>
<td>0.015</td>
<td>0.109</td>
</tr>
<tr>
<td>5</td>
<td>1556</td>
<td>0.016</td>
<td>0.656</td>
</tr>
<tr>
<td>6</td>
<td>6164</td>
<td>0.016</td>
<td>8.128</td>
</tr>
<tr>
<td>7</td>
<td>24576</td>
<td>0.024</td>
<td>117.899</td>
</tr>
</tbody>
</table>

Appendix A. $\sqrt{3}$ Reverse Subdivision

Using the method proposed in [20], the following equations are obtained for $\sqrt{3}$ reverse subdivision. In this method, the details of vertex-vertices (d_0) are determined by a linear combination of the details of face vertices (d_i) in their neighborhood (Figure 21). Equation A.1 demonstrates this relationship. Equation A.2 also indicates how the coarse vertex of a face vertex can be obtained using the vertices in its neighborhood. To avoid magnifying the results from reverse subdivision, coarse vertices are refined by vector δ_0, which is obtained by an optimization to reduce the magnitude of the details d_i [20]. Note that $\alpha = \frac{4 - 2\cos(\frac{\pi}{3})}{9}$ is the parameter to find the position of vertex-vertices in $\sqrt{3}$ subdivision [8].

\[
\begin{align*}
\begin{align*}
\alpha & = \frac{3}{2n} \sum_{i=1}^{n} d_i & (A.1) \\
\beta & = \frac{1}{1 - \frac{2}{3} \alpha} f_0 - \frac{\alpha}{n(\frac{3}{2} - \alpha)} \sum_{i=1}^{n} f_i & (A.2) \\
\delta_0 & = \frac{3}{2n} (1 - \alpha) + \frac{3}{7} \sum_{i=1}^{n} d_i & (A.3)
\end{align*}
\end{align*}
\]

Appendix B. $\sqrt{2}$ Reverse Subdivision

$\sqrt{2}$ subdivision is a scheme designed for quadrilateral meshes [7]. Similar to the $\sqrt{3}$ subdivision scheme, there are two types of masks for face-vertices and vertex-vertices. Face-vertices are simply found by averaging the four vertices making a face, and vertex-vertices are obtained by moving a vertex towards the average of the vertices in its neighborhood. Equations B.1 and B.2 provide the masks for face and vertex vertices respectively. Figure B.28 illustrates the vertices involved in Equations B.1 and B.2. α and β can receive different values. For example, in [7], $\alpha = \frac{1}{4} (1 - \cos(\frac{\pi}{4}))$ and $\beta = 0$. Figure B.29 illustrates the result of this subdivision on Teddy.

\[
\begin{align*}
\begin{align*}
v_f & = \frac{1}{4} (v_0 + v_1 + v_2 + v_3) & (B.1) \\
v_v & = (1 - \alpha - \beta) v + \frac{1}{n} \sum_{i=0}^{n-1} \alpha v, + \beta v_{2i+1} & (B.2)
\end{align*}
\end{align*}
\]

Using the method proposed in [20], we can define a compact multiresolution for a class of $\sqrt{2}$ subdivision in which $\alpha = 2\beta$. In this method, the details of vertex
vertices \((d_0)\) are again found by a linear combination of the details of face vertices \((d_i)\) in their neighborhood (Figure 21). Equation B.3 demonstrates this relationship. Equation B.4 also indicates how coarse vertices are determined. We also give \(\delta_0\) to reduce the magnification effect of reverse subdivision for \(\sqrt{3}\) subdivision in Equation B.5.

\[
\begin{align*}
 d_0 &= \frac{4\alpha}{n} \sum_{i=1}^{n} d_i, \\
 c_0 &= \frac{1}{1-4\alpha} f_0 - \frac{4\alpha}{n-4\alpha n} \sum_{i=1}^{n} f_i, \\
 \delta_0 &= \frac{4\alpha (2-3\alpha) + \frac{1}{2}}{2(1-\frac{4\alpha}{n})^2 + \frac{n}{16}} \sum_{i=1}^{n} d_i.
\end{align*}
\]

Appendix C. \(\sqrt{3}\) and \(\sqrt{2}\) Smooth Reverse Subdivision

The basic idea of smooth reverse subdivision is to perturb coarse approximations by vector \(\delta\) to minimize an energy function \(E_{\text{total}}(\Delta) = \omega E_{\text{sub}}(\Delta) + (1-\omega)E_{\text{smooth}}(\Delta)\) in which \(E_{\text{sub}}\) is the euclidean distance between fine points and subdivided coarse approximations and \(E_{\text{smooth}}\) is the energy of coarse approximations in the local neighborhood. Using the method proposed in [37], we can solve this weighted optimization problem for \(\sqrt{3}\) and \(\sqrt{2}\) subdivision methods and find perturbation vector \(\delta\). After finding the coarse approximations using compact reverse subdivision methods, we can perturb the coarse approximations using \(\delta\). Equations C.1 and C.2 provide \(\delta\) for the \(\sqrt{3}\) and \(\sqrt{2}\) smooth reverse subdivision respectively.

\[
\begin{align*}
 \delta_{\sqrt{3}} &= \left(\omega(1-\alpha)\frac{16}{n} + \frac{1}{2} \sum_{i=1}^{n} d_i \right) + \left(\frac{1}{n} \sum_{i=1}^{n} c_i - (1-\omega)c_0\right) + (1-\omega) \left(\frac{1}{n} \sum_{i=1}^{n} d_i \right) + \left(1-\omega\right) \left(\frac{1}{n} \sum_{i=1}^{n} c_i - (1-\omega)c_0\right) \\
 \delta_{\sqrt{2}} &= \left(\omega(1-\alpha)\frac{16}{n} + \frac{1}{4} \sum_{i=1}^{n} d_i \right) + \left(\frac{1}{n} \sum_{i=1}^{n} c_i - (1-\omega)c_0\right) + (1-\omega) \left(\frac{1}{n} \sum_{i=1}^{n} d_i \right) + \left(1-\omega\right) \left(\frac{1}{n} \sum_{i=1}^{n} c_i - (1-\omega)c_0\right).
\end{align*}
\]

References

