
1

NaturaSketch: Modeling from Images and Natural
Sketches

Luke Olsen1, Faramarz F. Samavati1, and Joaquim A. Jorge2

1University of Calgary, Alberta, Canada
2Instituto Superior Técnico, Lisbon, Portugal

Abstract—Sketching on paper is a quick and easy way to
communicate ideas. However, many sketch-based systems require
people to draw in contrived ways instead of sketching freely as
they would on paper. Our NaturaSketch system affords more
natural interfaces by allowing them to use multiple strokes
that overlap, cross and connect. Other contributions include
a meshing algorithm to support multiple strokes of different
classifications, which enables users to design complex 3D shapes
from sketches drawn on images. To provide a familiar workflow
for object design, modeling and editing operations can also be
specified through a set of sketch annotations. User tests indicate
that this approach empowers designers to produce a variety of
models quickly and easily.

I. INTRODUCTION

Sketching on paper is a quick and easy way to communicate
ideas. In computer modeling, sketches might be used for both
rough conceptualizations and detailed design drawings. Many
experienced artists have workflows based around 2D software
such as Photoshop, which allows them to create detailed design
sketches from one or two viewpoints.

Sketch-based interfaces for modeling (SBIM) have been
proposed to leverage this sketching ability in the digital
domain. However, understanding and interpreting sketches
depends on deeply-ingrained visual rules and vast shape mem-
ories [Hof00], and translating these processes to the computer
is a challenging task. As such, in many sketch-based systems
users must draw in a contrived manner instead of sketching
freely as they would on paper. We believe that how a sketch
is drawn (eg. number and order of pen strokes) should make
little difference to what the systems perceives it to be.

Most sketch-based mesh creation tools offer single-stroke
input for creating an initial mesh, perhaps followed by a
sketch-rotate-sketch workflow for finding the correct view-
point and adding details with 3D editing techniques [IMT99],
[NISA07]. While experienced modelers can create detailed
objects in this way, it lacks the exploratory and evolutionary
aspects of sketching on paper. If we instead wait for the user to
initiate the construction, users have the opportunity to sketch
with many strokes, erase, reposition the canvas, and sketch
over existing lines as they would on paper, leading to a more
natural sketching interface. Such an interface fits well with the
workflow used by experienced 2D artists.

The NaturaSketch system supports more natural sketching
by allowing input to contain multiple strokes that overlap,
cross, and connect. Combined with a meshing algorithm that

supports multiple strokes of different classification, users can
design complex 3D meshes easily from sketches and images.
Figure 1 shows the process used by NaturaSketch to convert a
sketch to a 3D model. The power and utility of the system
– of which some aspects have been published previously
[OS10a], [OS10b] – is demonstrated with several results and
an application to 3D image conversion.

II. USER INTERFACE

The NaturaSketch interface is primarily a canvas onto which
the user draws, along with a few buttons and menu items.
The user can also provide an image of the object they are
modeling, which will help them to draw in accurate proportion.
The sketch is drawn on top of the image with freehand pen
marks (shown in black ink) and some annotations indicating
operations (red ink).

A sketch is simply a set of strokes acquired from a mouse
or tablet. Positional information alone is sufficient, but ad-
ditional data such as pressure and timestamps (for velocity)
are retained when available and used to adjust parameters
for stroke extraction (see Section III). Each stroke point is
projected from window coordinates onto a 3D drawing canvas,
and these projected coordinates are retained. This allows for
a robust interface in which the canvas can be panned and
zoomed, since the canvas can be any bounded plane in 3D.

Once their sketch is completed, 3D model construction is
initiated by the user via a button. Changes to the 3D model
can be made easily by returning to the sketch, modifying or
adding to it, and re-constructing.

For creating their sketch, we provide three tools to the user.
The regular Pen tool allows the user to create their sketch
with any number of strokes (Figure 2a). The strokes can
overlap, and their relative order is not important. As shown in
the example, the user is free to sketch complex objects with
multiple parts, regions, and interior features. The algorithm for
processing these sketches is described in Sections III-IV.

The Magnetic pen (Figure 2b) is a tool that enables easy
tracing of the boundary and feature lines in an image, and is
based on intelligent scissors image segmentation [MB95]. The
image is modeled as a graph with edges between neighboring
pixels, and edge weights are derived such that moving along
strong edges has lower cost than moving across homogeneous
regions. To segment an object from an image, seed points are
placed on the object boundary and a pathfinding algorithm



2

User drawing Classified sketch Planar embedding Textured 3d surfaceg g

Fig. 1. The NaturaSketch system. First the user freely sketches over an image. Then the system automatically extracts and classifies the sketches lines,
creates a planar embedding, and inflates to a textured surface.

Related Work
There are many varied approaches to understanding and interpreting sketched input [OSSJ09]. Our work is most related to those
that consider sketches with many strokes, such as Rajan & Hammond’s image-based method for 2D sketch recognition [RH08]
and Pusch et al.’s space-partitioning approach to blending multiple strokes [PSNW07]. We are also inspired by works that
use drawing characteristics such as pen speed to assist in processing, such as Dematapitiya et al. [DKKS05] and Sezgin &
Davis [SD04].
Our work is closely related to mesh inflation systems such as Teddy [IMT99] and FiberMesh [NISA07], which allow users
to easily create 3D models by sketching freeform lines. The latter system constructs a surface by treating the input strokes as
constraints on the surface position and solving a non-linear system, with the mesh structure coming from a regular triangulation
of the 2D sketch region. In contrast, our system uses a coarse triangulation followed by subdivision to produce a subdivision
surface, and constructs the surface geometry using functional z-offset displacement. We use a distance transform to compute
the offset distance, similar to the Matisse system [BPCB08].
This work is also inspired by image-based modeling systems, such as William’s 3D Paint [Wil90], where a user-edited
displacement map is combined with a painted or acquired texture to create a 3d model, and the more recent Repoussé
system [JC08], which uses mesh inflation to add depth to photographs using smooth and sharp stroke constraints on a dense
triangle mesh.
Gingold et al. [GIZ09] introduced the concept of structured annotations, in which the user is able to augment a sketch with
markings that indicate structural relationships such as symmetry and alignment between the legs of an animal. The idea of
adding non-geometric elements to a sketch inspired our own annotations described in this article.

REFERENCES

[BPCB08] BERNHARDT A., PIHUIT A., CANI M. P., BARTHE L.: Matisse: Painting 2d regions for modeling free-form shapes. In Proc. of Eurographics
Workshop on Sketch-Based Interfaces and Modeling (SBIM ’08) (2008).

[DKKS05] DEMATAPITIYA S., KAWAZOE M., KHAND Q. U., SAGA S.: Object snapping method using multi-resolution fuzzy grid snapping technique. In
Proc. of Eurographics Symposium on Sketch-Based Interfaces and Modeling (SBIM ’05) (2005).

[GIZ09] GINGOLD Y., IGARASHI T., ZORIN D.: Structured annotations for 2d-to-3d modeling. In Proc. of SIGGRAPH Asia 2009 (2009), pp. 1–9.
[JC08] JOSHI P., CARR N.: Repoussé: Automatic inflation of 2d artwork. In Proc. of Eurographics Workshop on Sketch-Based Interfaces and Modeling

(SBIM ’08) (2008).
[OSSJ09] OLSEN L., SAMAVATI F., SOUSA M., JORGE J.: Sketch-based modeling: A survey. Computers & Graphics 33 (2009), 85–103.
[PSNW07] PUSCH R., SAMAVATI F., NASRI A., WYVILL B.: Improving the sketch-based interface: Forming curves from many small strokes. The Visual

Computer 23, 9-11 (2007), 955–962.
[SD04] SEZGIN T., DAVIS R.: Scale-space based feature point detection for digital ink. In Making Pen-Based Interaction Intelligent and Natural (October

21-24 2004), AAAI Fall Symposium, pp. 145–151.
[Wil90] WILLIAMS L.: 3d paint. In Proc. of 1990 Symposium on Interactive 3D graphics (SI3D ’90) (1990), pp. 225–233.

is used to find the optimal path between them. To maintain
a sketching metaphor in our system, the seed points are
automatically extracted from the magnetic pen stroke. In
particular, the corner regions of the stroke are used as seeds. To
prevent snapping to distant edges, the search space is restricted
to a fixed distance from the original stroke. Together, the seed
points and search region are used as criteria to find the optimal
path along the image edges.

Finally, the Annotation tool is used to indicate modeling
operations on the sketched object, such as extrusion and hole-
cutting. This enables the user to create more varied shapes with
arbitrary topologies. Annotations are created with freehand

strokes simultaneously with the sketch itself. Typically, the
user first sketches the object and features, and then annotates
the sketch. From the application point of view, the order of
drawing does not matter – annotations strokes can be made
before the sketch itself, if the user desires. However, unlike
the main sketch, it is assumed that the annotations are drawn
with continuous strokes. This is because the annotations are
iconic symbols denoting operations, akin to gestures. The full
set of supported annotations is shown in Figure 2c, and their
implementation is described in the next section.



3

(a)

(b)

...

(c)
Cross‐section Hole Extrusion Bump Emboss

Fig. 2. User interface: (a) the main input mode is the Pen, used for defining object geometry and feature lines; (b) the Magnetic pen automatically aligns
the input with image edges; (c) the Annotation pen is used for indicating operations such as hole-cutting.

III. SKETCH ANALYSIS: STROKE EXTRACTION &
CLASSIFICATION

There are two main components in our system. The Sketch
Analysis component (Section III) is responsible for converting
the unstructured user sketch into a useful form; this involves
first extracting salient strokes from the sketch, and then clas-
sifying the extracted strokes according to their role in object
definition. The Surface Construction component (Section IV)
uses the set of classified strokes to create a smooth surface;
a planar embedding of the strokes is created in 2D, followed
by inflation to 3D using functional displacement.

To support complex sketches for mesh creation, we must
consider how the input strokes combine to form perceptual
strokes, and how these perceptual strokes combine to define
an object. These questions lead us to a 2-stage sketch analysis
approach (see Figure 3). First, the input sketch is rasterized and
traced to extract contiguous stroke segments. Second, these
segments are classified according to their relative positions
and containment within the regions defined by them.

Our proposed method for stroke extraction is similar to
previous work based on thinning and contour tracing [RH08].
Our contributions are identifying branch points, restoring sharp
features, and using on-line sketching information to improve
accuracy. The approach is focused on line drawings without
shading cues, a simplification that makes the problem of stroke
classification tractable while still allowing for sketches with
many lines and complex shapes.

To perform contour tracing, the strokes should be drawn to

a raster image. After rasterization, a binary image with white
(paper) background pixels and black (ink) foreground pixels
is generated by applying a Gaussian blur to close small gaps
between strokes, and then thresholding. Finally, morphological
thinning is applied to produce lines that are only 1-pixel wide.

To trace the contours of a binary image I , we use a label
image L of the same size with all pixels initially unlabeled
(Li,j = 0). The goal is to assign a label to all foreground pixels
of I such that connected pixels (lines) have the same label.
Starting from an unlabeled foreground pixel, tracing proceeds
by advancing to the first unlabeled clockwise foreground
neighbor. Tracing terminates when the start pixel is reached,
or a pixel with multiple unlabeled neighbors is encountered.
The latter case corresponds to a point where several strokes
meet, which we call a branch point.

In our implementation, the active contour is terminated
when a branch point pixel is reached. This ensures that after
extraction, no stroke crosses another. Tracing then resumes at
the next unmarked foreground pixel until the entire image has
been processed. After tracing, each traced line is converted
back to a stroke by a simple 2D mapping.

The stroke thinning step can cause artifacts around sharp
features, where the width variance in rasterized lines results
in an unwanted branch point with a short line attached. In most
cases (when w is small) the effect is not prominent; however,
for very sharp features, or very messy sketches, the erosion
results in an unwanted branch point.

Sharp features are restored by identifying branch points with
three connected strokes, where the angle between the two



4

before
User sketch Rasterization Traced strokes Sharp features restored

f

after

Fig. 3. Sketch analysis overview: the input sketch is rasterized and traced to extract stroke segments. Sharp features are restored in a post-processing step.

longer strokes is acute. When these conditions are satisfied,
the short is discarded and the longer strokes are merged to
create a continuous stroke with no branch point (see the insets
of Figure 3).

After extracting strokes from the sketch, we should consider
how they combine to define an object. Where is the object
boundary? What do non-boundary lines tell us about the
object? For example, consider a simple sketch of a face: the
two eyes are separate objects if seen alone, but in the context
of other lines – contained within the head, near the mouth – we
can perceive them as features of a larger object. Therefore, a
stroke classification depends on where the strokes are located
as well as the regions they define. To support objects with
features and general topology, the relative containment of
strokes is also important. Domain-specific knowledge – such
as the arrangement of human facial features used in Sharon
& van de Panne’s constellation models [SvdP06] – can aid in
the classification task, but our system is targeted at general
modeling tasks.

We employ an image-based approach to find the con-
tainment hierarchy, based on a connected components (CC)
labeling. The CC algorithm is suitable for the classification
task because of its awareness of not only the strokes, but the
space (or regions) between them. To identify distinct regions
in a sketch, the CC labeling algorithm is used on the rasterized
stroke image where each pixel is either foreground (stroke) or
background (non-stroke). (For classification, we are interested
in the regions defined between the strokes, but not the stroke
regions themselves since the strokes are already known. In
the following discussion, region refers to a non-stroke region.)
The labeling of a simple sketch is shown in Figure 4, where
the strokes define four non-stroke regions: A, B, C, and the
background region BG.

To identify objects in a sketch – and then classify the
extracted strokes according to how they define those objects –
we can examine the relationship between strokes and regions.
Because strokes are terminated at branch points, each stroke
must be adjacent to two regions – it could not be adjacent to
more regions, as any point where three or more regions meet
would be a branch point. Thus it is sufficient to check the
regions adjacent to a stroke at any point along it, such as the
midpoint.

In a labeled image, there are two types of region: back-
ground (BG), and interior (INT; labeled A, B, . . . in the
figures). Since each stroke is adjacent to two regions, the
possible adjacency arrangements are BG-BG, BG-INT, and
INT-INT. In the latter case, the interior region can be the same
or different, leaving a total of four possible arrangements, or
classes. Based on a subjective analysis of where these strokes
appear in a sketch, we have named these classes as object
boundary (BG-INT), region boundary (INTA-INTB), feature
(INTA-INTA), and suggestion (BG-BG).

This classification is suitable for mesh creation, as the object
boundary indicates the region to be filled with the surface,
while region boundaries and features can be used to guide
the meshing process. Region boundaries, when closed and
not adjacent to any object boundary, define potential holes
in the object. Suggestion strokes may or may not be useful to
a particular application; for example, they could be mapped
to generalized cylinders in 3D, or aligned pairs could be used
to construct surfaces of revolution.

The stroke-region adjacency information can be thought of
as a graph whose nodes correspond to regions, and edges
correspond to strokes separating the regions. Each stroke
class corresponds to a particular kind of edge in the graph.
Suggestions and feature lines are self-edges of a BG or INT
region, respectively, while object and region boundaries are
edges between different regions.

The region graph offers insight into the object structure,
such as the presence of multiple objects, containment of
regions, and the location of holes. Consider Figure 4b. Region
C is only adjacent to B, and so C must be contained within
B. In general, it can be observed that if region X is adjacent
only to non-BG region Y , then X is contained by Y . Further
observation shows that each unique object corresponds to a
connected component (in the graph-theoretic sense) of the
region graph after removal of the BG node. In the example
graph, there are two objects: the first is defined by regions A,
B, and C, while the second is defined by regions D and E.

Extending the construction to allow for holes makes it useful
for a wider variety of modeling tasks. A hole is of course
an empty space surrounded by non-empty space. Thus, in a
sketch, a hole region must be surrounded by, or contained in,
another region. In terms of the region graph, this means that



5

(a)

BG

Extracted strokes Connected components Classified strokes

A
B
C

Class Style Adjacency

Object boundary BG – INTstroke
A

Region boundary INTA – INTB
Feature INTA – INTA
Suggestion BG – BG

Check adjacency Classify

B

(b)

A

D

Obj 1

Object 2
C

B

E

User sketch Region graphObject 1

Fig. 4. (a) Classification is based on which regions are adjacent to each stroke; the four possible classes are object and region boundaries, features, and
suggestions; (b) The adjacency information defines a region graph, which can be used to identify unique objects and potential holes in an object.

a hole region must be two or more levels deep in the graph.
Because of inherent ambiguity in interpretation (is it a hole or
simply a region?), the user must identify holes by drawing a
’cross’ annotation over the hole region.

A. Adapting to Drawing Styles

Artists often sketch iteratively, at first making light, hasty
strokes to define rough boundaries and guidelines, then tracing
these rough lines with harder, more deliberate strokes. The
viewer naturally perceives the harder (and thus darker and
thicker) strokes as being more important, and uses these lines
to understand the sketch. Using this observation of artistic
drawing tendencies, we consider an approach for using stroke
speed and pressure to adapt to a user’s drawing style. Strokes
with very low pressure or high speed can be de-emphasized
or ignored, while strokes with high pressure or low speed can
be trusted as truly capturing the artist’s intent.

The extraction’s success depends largely on the strokes’
rasterization width w. If drawn too thin, then perceptual
connections may not be made, but drawing too thick can
conversely result in unwanted connections or region clos-
ing. In general, a thin stroke rasterization is preferable to
a thick rasterization, because fewer artifacts are introduced
by thinning and the original strokes are captured more accu-
rately. However, a thin rasterization will not always lead to a
perceptually-correct extraction, because perceived connections
between overlapping strokes will not be created. Consider the
two apples shown in Figure 5: if these sketches were traced
directly, the “messy” sketch would result in many strokes

along the apple boundary even though they combine in the eye
to form a single contour. The question is, how can a system
adapt to different drawing styles?

Figure 5 shows two apples sketched in different styles.
The left apple is sketched in a deliberate style, and the right
with a hasty style. Deliberate strokes are characterized by
high pressure and low pen velocity, while a hasty stroke has
high velocity and low pressure. In the former case, a smaller
rasterization width w can be used so that the original intent
is preserved. In the latter case, a larger w should be used to
create the perceptual connections and overlaps in the strokes.

For each apple in Figure 5, two types of rasterization
have been used: thin lines and thick lines. We can see that
for the deliberate sketch, the thin rasterization results in the
original details being preserved and ultimately in a successful
extraction and classification. Conversely, a thick rasterization
of the deliberate sketch results in details being obscured and
an incorrect classification. For the hasty sketch, the opposite is
true: thin rasterization results in a poor classification because
the small gaps between strokes are not closed, while a thick
rasterization results in a correct classification.

Based on such observations, our system uses an automatic
tuning phase in which each stroke’s average pressure and
speed controls the rasterization width w. To do this, the
stroke pressure and velocity are quantized to three levels: low,
medium, and high. This defines nine possible pressure-velocity
combinations, which are mapped to w. This width adjustment
does not change what the user sees, but rather happens
internally for the purposes of stroke extraction. Using this



6

(a)

thin

Deliberate
thick

Deliberate
(b)

thin

Hasty
thick

Hasty

Fig. 5. Adapting to drawing styles: (a) for deliberate sketches, thin rasterization (top) is best; (b) for hasty sketches, thicker lines (bottom) that overlap and
blend together lead to better results. Reversing the settings can cause unwanted blending (eg. the stem in (a-bottom)) or misclassification (b-top).

automatic tuning, the system is able to respond to the user’s
drawing style and achieve better classification performance.

IV. SURFACE CONSTRUCTION

The guiding principle in surface construction is that the
sketched lines are important, and every sketched line should
be represented in the created mesh. In particular, the goal
is feature-sensitive meshing, where edges of the mesh are
enforced to follow the sketched lines. A secondary goal is to
create a mesh that has subdivision connectivity, since subdi-
vision results in a nice mesh structure with well-shaped faces
and mostly regular-valence vertices. Meshes with subdivision
connectivity can also be used in multiresolution applications
for multi-scale editing or level-of-detail rendering.

In our meshing approach, we first create a planar embed-
ding of the sketched object, based on the classified strokes.
The planar mesh is then inflated to a 3D surface using a
functional vertex displacement. This approach bridges the gap
between mesh quality and topological variety that exists in
previous work. On one side of the gap are approaches such
as rotational blending surfaces [CSSJ05], which are limited
to non-branching topologies but produce nicely-parameterized
NURBS surfaces. On the other side, works such as Fiber-
Mesh [NISA07] support arbitrary topologies but suffer in
terms of mesh quality, especially after adding surficial details.

A. Planar Embedding

Each sketched object is composed of boundary strokes,
region boundaries, features and suggestive strokes. A planar
embedding should have triangles with edges that follow the
strokes, but also respect the boundaries and holes so that only
the object interior is covered with triangles. To create a planar
embedding of these strokes, we first approximate each stroke
with a sparsely-sampled polyline and triangulate those points,
then perform a snapped subdivision (Figure 6a).

The polyline approximation is constructed in two steps.
First, sharp corners are found by looking the local change of
direction φ at each stroke sample (Figure 6b). A directional
change exceeding a threshold angle φt indicates that the
sample is at or near a sharp corner. To reduce the effect
of small-scale jitter that can occur in the input points, the
incoming and outgoing directions at a point pi are considered
over a small window of k points.

These corner points are typically not enough to approximate
a sketch – for example, a circle would have no corner points.
Therefore, we also use an iterative splitting scheme in which
the strokes are split between corner points at the point of
maximal deviation from a straight-line approximation. Each
sub-segment can then be split in the same fashion, until either
the maximal point is within a threshold distance of the straight
line, or the segment is too short to split. The benefit of this
approach over something like least-squares is that it uses just
enough points to represent the data, rather than selecting the
best k points.

After each stroke has been approximated, a coarse mesh
is created from a Constrained Delaunay Triangulation (CDT)
of the polyline vertices, with the stroke segments acting as
constraints. That is, if two vertices are connected by a stroke
segment, then the triangulation must contain an edge between
those vertices. This is consistent as long as no two stroke
segments intersect each other, a condition that is ensured by
terminating strokes at branch points during the tracing stage.

Since the polylines contain a small number of points, this
coarse mesh only approximates the input strokes. To provide
a better match, we use a snapped-subdivision approach in
which newly-created vertices are moved onto adjacent stroke
segments as the mesh is subdivided (Figure 6c).

To do this, stroke segments are associated with edges based
on the polyline approximations. As the mesh is subdivided,
each edge is split into two edges by inserting a new vertex ve.
In the case where the edge has an associated stroke segment,
snapping occurs by by moving ve to the midpoint of the stroke.
So that the snapping process can be subsequently applied, the
stroke segment should also be split at the midpoint, and each
half-segment associated with the newly-created edges. After a
few iterations of subdividing and snapping, the edges in the
planar mesh follow the original sketch very closely.

B. Inflation

The planar mesh constructed thus far could be used in any
previous inflation method, such as the non-linear optimization
approach of FiberMesh [NISA07]. In NaturaSketch, however,
we explored a constructive inflation method that allows for
customization and control of the surface’s cross-section.

To inflate a smooth 3D surface (Figure 7), each vertex in
the planar mesh should be offset in the depth by an amount
proportional to its distance to the boundary. We use a discrete



7

(a) User strokes Polyline approximation Constrained triangulation Snapped subdivision

(b)

φ > φt
max

Corner points Iterative splitting

(c)

stroke

After subdivision After snapping

Fig. 6. (a) A planar embedding of the sketch is created by approximating each stroke with a small number of points, constructing a constrained triangulation of
those points, and then using snapped subdivision; (b) corner conditions and iterative splitting are used to create a polyline from a stroke; (c) when subdividing
the coarse mesh, edge vertices are snapped onto the associated stroke.

image-based distance transform [FCTB08] to approximate this
distance. Given a binary image I , the distance transform T (I)
is an image in which the value of a pixel encodes the distance
to the nearest black pixel. If Ii,j is black, T (Ii,j)) = 0, pixels
adjacent to black pixels have the value 1, and so forth. Since
the goal is to compute the distance from interior vertices to
the boundary, I should contain only the boundary strokes, but
not region boundaries or features.

This creates a displacement map whose usage is similar to
Williams’ 3D Paint [Wil90], but derived automatically from
the input strokes rather than acquired from a range scanner
or extra user input. Then, for any vertex in the planar mesh,
the distance d to the boundary can be found with a lookup in
T (I). That yields a linear measure; to get a smooth result, d is
passed through a circular mapping function X(d) (Figure 7a).

A benefit of this approach is that different shapes can be
achieved by using different mapping functions. Figure 7b
shows a few examples. The cross-section annotation also
allows the user to draw their own function directly. However,
because the distance field is not smooth at the boundary,
this approach can produce sharpness along the object’s cross-
section.

C. Applying Annotations
From an interface perspective, annotations must be distin-

guishable from the sketch. In a paper sketch, such mark-ups
might be made in a different color of ink, or they may be
clearly distinguishable based on context. Since our system
is context-free (that is, no particular modeling context or

domain is assumed), it would be infeasible to unambiguously
distinguish between a sketch and annotations; for example,
a cross could be interpreted as a feature on an object or as
a hole-cutting annotation. Therefore, the Annotation pen is a
separate modality that the user must explicitly select before
marking up their sketch.

The supported annotations are shown in Figure 8. The cross-
section annotation applies to an object boundary, and allows
the user specify the distance transform mapping by sketching.
Several region-based operations can be annotated, including
hole-cutting, extrusion, and bumps. Finally, annotations can
be used to emboss feature lines in an object.

The shapes of the annotations were chosen because their
interpretation is clear both to the user and to the system. The
context of each annotation – starting on a stroke or region, or
contained within a region – is found from the region hierarchy.
In our implementation, a hash-table is used to match a region
or stroke color in the connected components image to the
corresponding region or stroke.

By design, there is little ambiguity between the annotations
once context is considered. For instance, the cross-section
annotation is the only one that relates to an object boundary
stroke. Thus, any annotation beginning on an object boundary
can reasonably be classified as a cross-section. Similarly,
any annotation beginning on a region boundary is either an
extrusion or a bump, so it only remains to classify the stroke
as a line or an arc. If a cross is found, then it can only be a
hole. Finally, the emboss annotation is the only one to begin
on a feature stroke.



8

(a)

X(d)

Planar mesh Distance transform Cross‐section function 3d mesh

(b)

Fig. 7. (a) Inflation uses a distance transform T (I) to displace vertices in Mp; (b) the 3D shape can be altered by using different cross-section functions.

X(d)

z

d

Cross‐sectionHole Bump Extrude Emboss

Fig. 8. The set of annotations supported in NaturaSketch (annotation strokes are shown in red).

V. RESULTS

NaturaSketch runs interactively on modest hardware, in-
cluding a 1.6 GHz tablet PC. Tracing and classifying strokes
typically takes about 0.5 seconds for a 512x512 raster size,
with stroke thinning taking the bulk of that time. Creating the
planar mesh and inflating the surface each require less than
100ms. Interactivity is important in a sketch-based system, so
that the user can easily make changes to their sketch and see
the result immediately.

We have used this software tool to create a variety of models
from photographs. The combination of an input image and
user sketch provides a model-image correspondence that can
be used to automatically texture-map the objects. As seen in
Figure 9, the resulting models are visually appealing and suit-
able for applications such as interactive games or animations.
For multi-part objects such as the lobster or dragon, the parts
were assembled manually.

We conducted an informal study to observe how new users
interacted with the system. Out of the eight participants
(7 male, 1 female), five were graphics researchers, though
only two considered themselves to be experienced users of
modeling software tools (either sketch-based or traditional).
Of the remaining three participants, there was one experienced
2D pencil artist, while the other two were not experienced with
either drawing or modeling.

Participants in the study were given a brief ten-minute
overview of the system and its capabilities and then asked
to create an object. Some user-created objects are shown in
Figure 9e-f, each created in 6-8 minutes.

We observed that subjects would generally draw much better

when tracing an image versus freehand sketching. Those with
an artistic background could draw well without assistance,
but also appreciated the ability to have an image guide.
The subjects also found the annotations intuitive and easy to
remember. The cross-section annotation was one exception, as
some users found it unintuitive to draw half of the function.
One possible remedy would be to accept the entire function
and only retain half, but this could also lead to unexpected
results for asymmetric functions. The other annotations (holes,
extrusion, bumps) were grasped very quickly by users, since
the shape and style of the annotation is tied directly to
the result. The only pitfall was the requirement that some
annotations begin on a stroke: due to inaccuracies in draw-
ing, annotations were occasionally not recognized correctly
because they did not begin exactly on a stroke.

Some areas for improvement were identified. The magnetic
pen tool, for instance, did not always give the expected result
for images with weak edges. Some participants also felt that
support for multiple cross-sections on a single object would
be desirable – for example, a sharp-edged sword blade and a
rounded hilt.

A. Application: 3D Conversion

Many of the 3D films released today are “3D conversions”
of regular 2D source material. The 3D effect is added in
post-production via a process of per-frame segmentation and
in-painting of occluded regions. This is painstaking work,
requiring the efforts of hundreds of artists over several months.
Such conversions are generally considered inferior to true 3D



9

(a) (b)

(c) (d)

(e) (f)
Fig. 9. Some objects created with the NaturaSketch system. The (e) teapot and (f) plane were created by participants in our user study. Each object was
created in less than 10 minutes.

(a)

Flat Inflated

(b)

Flat Inflated

Fig. 10. 3D conversion: (a) a golf ball from a 3D model; (b) of a frame of Disney animation. (Viewable with red-cyan glasses.)

source material because the depth is only inter-object, not
intra-object.

Based on these observations, we considered how NaturaS-
ketch could be used to create more immersive 3D conversions.
Using our system, rather than just segmenting each frame into
different depth planes, we can segment and inflate different
parts of an image to create in-plane depth variance. In this way,
there is intra-object depth because each eye sees a different
view of each object. Sýkora et al. [SSJ∗10] explored a similar
concept in their work on cartoon pop-ups using a small number
of user-specified relative depths.

Figure 10 shows a couple of examples. Figure 10a shows a
2D rendering of a 3D golf ball, followed by both flat and
inflated 3D conversions. The original 3D scene provides a
ground-truth expectation, and because of the shading and depth
the inflated version more effectively creates a perception of
3D.

In Figure 10b, because the scene is filled with complex
shapes and textures the differences are more subtle. The in-

plane depth created by inflation, along with the shading cues,
do seem to increase the perception of 3D. However, the
benefits would be easier to judge by converting an entire scene.

VI. CONCLUSION

The NaturaSketch represents several contributions to SBIM.
The stroke extraction, classification, and parameter tuning
methods allow our system to support and handle natural
sketched input with many overlapping strokes and regions.
This works in conjunction with a robust mesh construction
algorithm that embeds all of the input strokes into the mesh
geometry, and a set of sketch-based annotations for editing and
deforming a sketched object. Each of these components are
tied together by an image-assisted interface in which images
can be used for drawing assistance and automated texturing.

The main limitation of our system is that the reconstructed
shapes are plane-symmetric. Complex objects such as the
dragon in Figure 9 can be created via annotations and by
creating multi-part objects, but a direction for future work is to



10

extend the expressive range of the system. This could be done
in several ways, such as supporting shapes drawn from off-
axis views (such as a car drawn from a three-quarter view) or
supporting sketches from multiple viewpoints and combining
them during reconstruction.

REFERENCES

[CSSJ05] CHERLIN J. J., SAMAVATI F., SOUSA M. C., JORGE J. A.:
Sketch-based modeling with few strokes. In Proc. of Spring
Conference on Computer Graphics (SCCG ’05) (2005), pp. 137–
145.

[FCTB08] FABBRI R., COSTA L., TORELLI J., BRUNO O. M.: 2d Euclidean
distance transform algorithms: A comparative survey. ACM
Computing Surveys 40, 1 (2008), 1–44.

[Hof00] HOFFMAN D. D.: Visual Intelligence: How We Create What We
See. W. W. Norton & Company, 2000.

[IMT99] IGARASHI T., MATSUOKA S., TANAKA H.: Teddy: A sketching
interface for 3d freeform design. In Proc. of SIGGRAPH’99
(1999).

[MB95] MORTENSEN E., BARRETT W.: Intelligent scissors for image
composition. In Proc. of SIGGRAPH ’95 (1995), pp. 191–198.

[NISA07] NEALEN A., IGARASHI T., SORKINE O., ALEXA M.: Fibermesh:
Designing freeform surfaces with 3d curves. In ACM Transactions
on Graphics (Proc. of SIGGRAPH ’07) (2007), ACM Press.

[OS10a] OLSEN L., SAMAVATI F. F.: Image-assisted modeling from
sketches. In Proc. of Graphics Interface (GI ’10) (2010).

[OS10b] OLSEN L., SAMAVATI F. F.: Stroke extraction and classification
for mesh inflation. In Proc. of Eurographics Symposium on Sketch-
Based Interfaces and Modeling (SBIM ’10) (2010).

[RH08] RAJAN P., HAMMOND T.: From paper to machine: Extracting
strokes from images for use in sketch recognition. In Proc. of
Eurographics Workshop on Sketch-Based Interfaces and Modeling
(SBIM ’08) (2008).

[SSJ∗10] SÝKORA D., SEDLACEK D., JINCHAO S., DINGLIANA J.,
COLLINS S.: Adding depth to cartoons using sparse depth
(in)equalities. In Proc. of Eurographics 2010 (2010).

[SvdP06] SHARON D., VAN DE PANNE M.: Constellation models for sketch
recognition. In Proc. of Eurographics Workshop on Sketch Based
Interfaces and Modeling (SBIM ’06) (2006).

Luke Olsen received his PhD in computer graphics from the University
of Calgary in 2011. His research interests lie in sketch-based interfaces,
subdivision and multiresolution, and the intersection of computer vision and
graphics. He is now working on exciting projects at Microsoft.

Faramarz F. Samavati is an associate professor in the Department of
Computer Science, University of Calgary. Prof. Samavatis research interest
is Computer Graphics, Visualization and 3D imaging. He has authored more
than 70 research papers in these areas and edited a recent book in Sketch-based
Modeling. He is also a network investigator of GRAND NCE (Networks of
Centres of Excellence of Canada in Graphics, Animation and New Media).

Joaquim A. Jorge coordinates the VIMMI research group at INESC-ID and
is a Professor at Instituto Superior Tcnico, Technical University of Lisbon.
He is Editor-in-Chief of the Computers and Graphics Journal, a Fellow of
the Eurographics Association and a Senior Member of ACM and IEEE. He
helped organize over 30 scientific events and served on over 130 program
committees, (co)authored over 190 publications in international refereed
journals, conferences and edited a recent book on Sketch-Based Modeling.


