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Abstract. A progressive curve representation based on reverse subdi-
vision is intro duced. Multiresolution structures for common subdivision
rules that have both banded reconstruction and decomposition �lters are
produced. Multiresolution �lters are usually applied to the whole curve
uniformly , while progressive curves are based on collapse and split op-
erations that can be applied locally on any portion of a curve. In this
work, �rstly , small width multiresolution �lters are constructed based
on the reverse of the cubic B-spline subdivision. The collapse and split
operations are replaced by a local decomposition and reconstruction pro-
cess.Second,an e�cien t algorithm and data structures are presented to
allow for the resulting progressive curve. Third, both a user-controlled
and an automatic method to select a portion of the curve for recon-
struction or decomposition are described. The technique intro duced has
various applications such as view-dependent rendering, exible editing
and progressive transmission.

1 In tro duction

Curvesare in many applications in CAD/CAM and computer graphics. Curves
can be found as the basis for high quality font design, artistic sketches, data
plots, 3D modeling and animation to manipulate object designand motion [14].
As described in [6], any exible curve representation should allow for e�ectiv e
tools that include editing, smoothing and scanconversion. In this research, the
problem of applying the operations listed below, on a segment of a curve are
addressed.Theseoperations have applications in such tools. The operations are:

{ Simplifying a segment of a curv e (smo othing): scanneddata can often
be replacedby simpler representations with lesspoints. Current methods al-
low the userto reconstruct and decomposethe whole curve [7,6]. No method
exists to apply reversesubdivision on a curve locally. Two approacheswould
be useful, a user-controlled method and an automated approach for segment
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simpli�cation. Possibleapplications include exible editing, wherein, the user
can lower the resolution of a curve to allow for easierediting, sincethere are
fewer points to manipulate. To view the �nal result, a �ner sequenceof points
can then be generated,for the curve segment (Figure 3).

{ View dep enden t rendering: sometimesit is desirable to re�ne a region
of a curve selectively. For view-dependent rendering, a segment of a curve
can be shown close-up,as a �ner set of points, while the remainder of the
curve can be kept at a lower resolution (Figure 4).

{ Progressiv e Transmission: when a curve is transmitted over a network,
a low resolution curve segment followed by correction information are incre-
mentally sent to get the higher resolution portion.

A multiresolution representation providesa uniform framework that addressesall
theseproblems,if applied to the wholecurve. It is useful to beable to manipulate
the completecurve.An alternativ eapproach is a progressivecurverepresentation
that is basedon edgecollapseand vertex split operations. This approach can be
applied locally to change and enhancea portion of a curve. However, it is not
basedon subdivision curves, that are very important in computer graphics.

In this work, we intro duce a new framework that replacesvertex-split and
collapse operations based on reverse subdivision with reconstruction and de-
composition operations. To achieve this, local �lters are used and applied non-
uniformly to curves, to do reversesubdivision. This has the advantage that the
resulting curve can be created with high and low resolution segments simulta-
neously. In this work, local clusters with many points are replaced by clusters
with fewer points, approximated using least-squares,that are a geometric good
�t to the original group of points.

Section2 describespreviouswork. Section3 outlines details of how decompo-
sition and reconstruction matrices are derived. Section 4 demonstratesapplica-
tions of this work. Section 5 illustrates the data structure and algorithms used.
Section6 shows results. Section7 summarizesthe main conceptsof this research
and proposessomepossiblefuture work.

2 Previous Work

In this section,somerelevant background work will be described, which includes
subdivision, reversesubdivision and progressive curves.

2.1 Sub division Curv es

Subdivision curves start with a set of coarsepoints ck and generate a larger
set of points ck + 1 , using a subdivision matrix P. This processis repeated a
�nite number of times to produce the �ner points. By successive application of
subdivision, a hierarchy of curvescan be obtained, which convergeto a smooth
curve. Subdivision can be stated by:

Pck = ck + 1 (1)
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Chaikin [3], Faber[4], Cubic B-Spline[16], Dyn-Levin-Gregory curves [5] are all
example of subdivision curve schemes.The �rst three subdivisions are spline-
basedand are all examplesof uniform knot insertion. For thesecurve schemes,
subdivision reversal can be studied as uniform knot removal. There is other
interesting work related to generalknot removal [11].

An exampleof cubic B-spline subdivision schemewill be described. Given an
initial control polygon ck . A new re�ned control polygon ck + 1 is created with
new points on the edgesof the given polygon and with the given polygon vertex
points in adjusted positions. The new points on the edgeof the original control
polygon are called ck+1

2i +1 . ck+1
2i are the vertex points of the control polygon. ck+1
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The limit curve of this subdivision is C 2 and it will be exactly the cubic
uniform B-Spline curve de�ned by the initial control polygon[17].This is one of
the most important curve schemes.The work in this research builds on the cubic
B-Spline subdivision scheme.Nevertheless,the approach may be built on other
subdivision schemesin a similar way.

2.2 Multiresolution Curv es

Multiresolution (MR) is a representation which allows the user to changea high
resolution to a lower one, in such a way that the original data can be recon-
structed correctly. MR can be consideredas a generalization of subdivision. A
conventional approach to obtain an MR representation is basedon wavelets [15].
Another approach to construct MR is using reversesubdivision [9,2,1]. which
converts a high resolution approximation to a lower one, while simultaneously
storing approximation-error (detail) information in a space-e�cient manner.The
high resolution approximation is recoverableby subdividing the lower resolution
approximation and adding detail information. Both their operations are simple
and fast. Figure 1, shows an MR structure. It shows an outline of an owl. The
left-most image is a given �ne set of points, while the middle and right-most im-
agesare successively coarserapproximations. The usercan easilyswitch between
the �ne and coarseimageswhen there is an MR representation.



4

Fig. 1. Subdivision and reversesubdivision

To createMR structures, four matrices A, B ,P and Q must be found, whose
rows provide �lters for decomposition and reconstruction. Assume that the
points for a curve are given. Denote them by ck + 1 (n points). They will be
referred to as the �ne data. It may be of interest to �nd an approximate set of
m coarsepoints ck (where m < n). By applying A, ck is obtained:

ck = Ack + 1 (2)

A is an m � n matrix. In order to have an accurate reconstruction of ck + 1 ,
the error terms of the approximation must be stored completely, as details. The
details (dk ) are captured as:

dk = B ck + 1 (3)

A and B provide the decomposition �lters. Decomposition is the processof
splitting �ne data into a low resolution part and details. The original data can
be recovered using two matrices P and Q, providing the reconstruction �lters.
The reconstruction phaseis as follows:

Pck + Qdk = ck + 1 (4)

2.3 Progressiv e Curv es

A progressive mesh[7] is an approach for constructing levelsof details of meshes.
It can also be used for curves. It is based on edge-collapseand vertex-split
operations. An initial �ne sequenceof points can be simpli�ed into coarsepoints
by applying a sequenceof edge-collapseoperations. The inverseof a collapseis
the vertex-split, which reproducesthe �ne meshfrom a coarseone.An important
issue that distinguishes the work presented in this work from a simple edge
collapseoperation is that a number of points are replacedby a new point, which
is a least-squareapproximation. Simple edgecollapsechoosesa new point that
is just conveniently chosenon the collapsededge.

Progressivecurveshavemany similarities to multiresolution curvessinceboth
of then store simpler structures and details. Both approaches allow the user to
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changebetweencoarseand �ne representations. A detailed discussionof the dif-
ferencebetweenboth, in relation to global MR can be found in [7]. The frame-
work presented in this research, is a combination of MR and the progressive
structure. Like progressive structures, the usercan apply the decomposition and
reconstruction operation on any portion of the curve. However, the decomposi-
tion and reconstruction operations in this work are basedon subdivision and its
reverserather than vertex split and collapse.As a result, a non-uniform distri-
bution of points can easily be obtained, if needed,as shown in �gure 2(b) all
MR points are obtained by local approximation basedupon least squaresin a
local area. By contrast, conventional MR �lters must be applied uniformly on
all the data points.

3 Progressiv e Structures Based on Multiresolution

In this research, a decomposition and reconstruction approach has beenapplied
using MR �lters to a portion of a curve. We have selecteda MR method con-
sistent with the cubic B-spline subdivision [2] for this paper, but the approach
can be usedfor other subdivisions. In this case,the minimum non-trivial length
of curve portions to collapseis �v e for this work, but the approach can be used
for other subdivisions. A sequenceof �v e points (ck + 1 ) from the �ne points are
changedto three coarsepoints (ck ), during decomposition:

ck + 1 = [ck + 1
0 ; ck + 1

1 ; ck + 1
2 ; ck + 1

3 ; ck + 1
4 ]

ck = [ck
0 ; ck

1 ; ck
2 ]

To preserve continuit y betweensegments, ck
0 must be equal to ck + 1

0 and ck
2

must be equal to ck + 1
4 . ck + 1

1 , ck + 1
2 and ck + 1

3 must be collapsedto a new point
ck

1 located in a best least squaresposition determined from ck + 1 points. This
conversionmeansthat two points are removed for any oneof the curve segments.
The proceduremay be repeated for each curve part, as needed.To allow for full
reconstruction, it is necessaryto keep someadditional information, as details.
In this case,two details, dk

0 and dk
1 must be stored:

dk = [dk
0 ; dk

1 ] (5)

For this scheme,the four matrices A, B , P and Q, described in section 2.2,
need to be found. In order to construct these partial and local �lters for the
speci�c portion of the data, we use and manipulate the general technique that
appeared in [2]. P is chosen as a small subdivision matrix for cubic B-spline
that converts three coarse points to �v e �ne points. This �rst row and last
row of P have been selectedas the identit y rows to keep the �rst and the last
points unchanged(ck

0 and ck
3 ). The other rows comefrom standard subdivision

matrices.
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Consequently , P is known and other matrices A, B and Q must be con-
structed consistent with P. In order to guarantee the full reconstruction of �ne
data from coarsedata and details, the matrices must satisfy the bi-orthogonalit y
condition [15] which is:
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�

P Q
�

=
�

I 0
0 I

�

In addition, it is preferred that the A matrix in Equation 2 producesck as a
minimizer of the problem:

min
ck

jj ck + 1 � Pck jj (6)

This guaranteesthat the details stored are small values.All theseconditions
are transformed to linear equations [2] and the solutions provide the matrices
as:
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These matrices together with equations (2), (3) and (4) form a local MR
representation that can be used for the decomposition and the reconstruction
operations on the points and detail information of ck + 1 , ck and equation (5).

4 Applications

The given progressive structure that is basedon multiresolution has several ap-
plications such asscanconversion,exible editing, view dependent renderingand
curve compression.There are other techniques available for these applications,
however our technique has the exibilit y of the progressive structure, as well as
consistencywith multiresolution and subdivision methods (Figure 2(c,d)). This
exibilit y is due to decomposition and reconstruction operations that are based
upon least squares(Equation 6). It is possibleto chooseany set of �v e succes-
sive points to collapse,consequently , the resulting coarsecurve doesn't necessary
have a uniform distributed set of points (Figure 2 (f )), however the details are
meaningful (as can be seemby comparing Figure 2(c) to 2(d)), sincethey come
from multiresolution �lters. An important advantage over simple collapse/split
progressive curvesis that there is the possibility of using the subdivision scheme
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Fig. 2. (a) An eaglecreated with 3156points. (b) A decomposedeagle.(c) Image (b)
reconstructed using details. (d) Image (b) reconstructed by subdivision alone without
details. (e) Image (a) after removing points using the metric described in section 4.2.
The total number of points are 50. (f ) Image (a) with 50 points, generated using the
simple remove one and keepone algorithm. (g) A portion of image (a) is decomposed.
(h) This image consists of three di�eren t segments, a high resolution part, a lower
resolution part and a portion that was decomposedand reconstructed without details
( the area selectedby the window)

to partially enhancethe curve (Figure 2(d)), becausethe local multiresolution
�lters are constructed from the reversesubdivision.

A crude, simple approach to choosepoints to decompose,would be to select
them at random. However, using a more sophisticated approach will more likely
guarantee that the resulting curve represents the initial scannedpoints. Another
useful consideration is to provide a user-controlled method as well as an auto-
mated approach. The two methods used in this work, to eliminate redundant
points in scanneddata, include the window selectionand metric approach.

4.1 Decomp osing a Curv e Segment Using Windo w Selection

This method allows the user to control which portion of a curve is decomposed.
All points in this part of the curve are divided sequentially to groups of �v e
points. Then the decomposition operation is applied to them. This processis
repeated until a certain number of points desired, is reached. An example is
shown in �gure 3. This diagram illustrates an application to edit Arabic fonts.
The user moves a window over the portion of the letter that is to be edited.
This segment has lots of control points, which make it tedious to selecta speci�c
point. The points in the selectedregion are then decomposed.The usercan then
manipulate the control points and elongatethe letter. The edited segment of the
font is then reconstructed to �ner points, to visualize the �nal resulting letters.
That is, ck + 1 are decomposedto ck and dk . The ck points are edited to produce
altered points ek , a new version of the �ne curve is produced as Pek + Qdk .
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Fig. 3. (a) Arabic font created with 3095 points. (b)The user selects a portion of
the font. The number of points in the selected region are reduced. (c) The letter is
modi�ed in the area with reduced points. (d) The decomposedsegment of the curve is
reconstructed.

4.2 Metric Ordering

This is an automated approach, to reducepoints that represent a segment of a
curve, using a metric. Examples of possiblemetrics can be found in [8,7]. The
metric usedin this research is basedon curvature. Areas of lower curvature are
decomposedand higher energy portions are preserved. The curvature is calcu-
lated by �nding the distancesand anglebetweena point and it's neighbors. The
metric valuesmc1 calculated for point c1 can be written as:

mc1 = w� j� j + we(e0 + e1) (7)

e0 and e1 are the Euclidean distancesbetweenpoints c1 and it's neighbors c0

and c2. The weights w� and wd allow the user to tweak the metric as desired,to
give either distance or angle criteria, more importance. All weights w� and wd,
usedin this research were set to 0.5.

Figure 2(e) shows results using the metric. The original eagleis made up of
3156points. Using the metric, segments of the curve are repeatedly decomposed
until 50 points remain. For comparison purposes,a simple scheme is used to
reduce the original eagle to 50 points (Figure 2(f )). This simple scheme keeps
one point and removes the following point. Again the processis repeated until
50 points remain. As can be seemfrom the �gure, using the metric in equation 7
meansthat �ne details such asthe sharp hump on the eagle'sback, beak details,
the bottom of the wing parts, are all preserved. All thesedetails are lost using
the simple scheme(Figure 2(f )).

5 Algorithms and Data Structures

In this sectionthe algorithms and data structures that areusedin the progressive
curve are outlined. To implement the window selection case in section 4.1,
it is possible to use a simple data structure, such as an array. However, the
data structure used, has been designed to work with the metric ordering in
section 4.2. The essential demand of data management, aside from correctly
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associating dk with ck information, is to keep track of the location and order
at which decompositions take place so that reconstructions can take place in
strictly reverseorder to decompositions. The main data structure used,consists
of a linked-list of elements (Element List). Each element consistsof the following
components:

{ Position[3] : an array representing the x,y and z co-ordinatesof a point.
{ Details : a data structure that storesdetails, for the correct reconstruction.
{ Metric Value : a double that is calculated from equation 7.

Details are stored as a ternary tree structure. For the three decomposed
elements, two details must be stored, as described in Section 3 and a hierarchy
of all the details is stored. This allows any of the curves, in any level of the
hierarchy to be regeneratedcorrectly. The data structure for the details is given
by:

{ d0 and d1 : two doublesrepresenting �rst and seconddetails
{ dleft, dmiddle and drigh t : three pointers, oneto a new left detail, middle

detail and a right detail structure.

dleft, dmiddle and dright store details for the �ne points, ck + 1
1 , ck + 1

2 , ck + 1
3 .

Two more data structures are needed:

1. A poin ter to the Elemen t List : this list is sorted basedon the metric
de�ned in section 3. It is needed for the decomposition stage. The �rst
pointer in this list, points to an element that should be decomposedwith its
left and right neighbors. During the decomposition stage,thesethree points
are removed.The pointer list is then updated locally by inserting a newpoint
at the suitable location. This processis repeated, until a certain percentage
of points is deleted.

2. A stack of indices of the coarse elemen ts : as each element is removed,
the index of the new coarseelement is stored in a stack. This is neededto
reconstruct a curve correctly. As described in section 4.2, the decomposition
stageselectspoints basedon a metric. Any �v e points can be chosento be
decomposed to three coarsepoints. During the reconstruction phase, it is
crucial that the samethree points be used,in order to return to the original
�v e points, this is guaranteed with the stack structure.

6 Results

To demonstrate the progressive curve, several examplesare shown. For Figure
1, the structure has beenreversesubdivided globally as in [2]. The left diagram
is a �ne meshand the coarserepresentation is shown in the middle and a coarser
representation is shown in the right-most �gure. Figure 2 (b) shows the eagle
outline. The �gure shows �ne set of points, coarsepoints, a reconstructed curve
usingdetails (Pck + Qdk ) and without details (Pck alone).The �gure alsoshows
a representation createdwith 50 points, generatedby using the metric described
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in section 4.2 and by using the simple keep one and remove one approach for
comparison(Figure 2 (e) and (f )). As described in section 4, results in 2 (e) are
superior to results in 2 (f ). Lastly the useof the window asa selectionmedium is
shown. Figure 2(h) shows a curve created with three di�eren t segments. Figure
3 illustrates exible editing, using the window selection feature. Figure 4 show
the stagesto view-dependent rendering. Lastly, an example of scanneddata is
shown in Figure 5.

Fig. 4. View dependent rendering. (a) The lotus o wer with a �ne set of points. (b)
The o wer was decomposed and an area selected, using a window was reconstructed.
(c) A close-up of the curve component selectedby the window in (b)

Fig. 5. High and lower resolution of scanneddata

7 Conclusions

This work combinesboth multiresolution and progressive structures together. A
multiresolution systemhasbeenconstructedusing the cubic B-spline subdivision
approach. The decomposition and reconstruction operationsarederived from the
multiresolution �lters. The e�ciency of the method is presented. Although, this
work is basedon the cubic B-spline subdivision, The approach can be applied
to any other curve subdivision schemesuch as Chaikin and Dyn-Levin-Gregory.
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Generalization of this work to surfacescan be consideredas a possibledirection
of future work.
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