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Abstract. A progressive curve represertation based on reverse subdi-
vision is intro duced. Multiresolution structures for common subdivision
rules that have both banded reconstruction and decomposition Iters are
produced. Multiresolution Iters are usually applied to the whole curve
uniformly, while progressive curves are based on collapse and split op-
erations that can be applied locally on any portion of a curve. In this
work, rstly , small width multiresolution Iters are constructed based
on the reverse of the cubic B-spline subdivision. The collapse and split
operations are replaced by a local decomposition and reconstruction pro-
cess.Second,an e cien t algorithm and data structures are preserted to
allow for the resulting progressive curve. Third, both a user-cortrolled
and an automatic method to select a portion of the curve for recon-
struction or decomposition are described. The technique intro duced has
various applications such as view-dependent rendering, exible editing
and progressive transmission.

1 Intro duction

Curvesare in many applications in CAD/CAM and computer graphics. Curves
can be found as the basis for high quality font design, artistic sketches, data
plots, 3D modeling and animation to manipulate object designand motion [14].
As described in [6], any exible curve represettation should allow for e ectiv e
tools that include editing, smoothing and scan corversion. In this researt, the
problem of applying the operations listed below, on a segmemn of a curve are
addressed.Theseoperations have applications in suc tools. The operations are:

{ Simplifying a segment of a curv e (smo othing): scanneddata can often
be replacedby simpler represettations with lesspoints. Current methods al-
low the userto reconstruct and decomposethe whole curve [7,6]. No method
existsto apply reversesubdivision on a curve locally. Two approaceswould
be useful, a user-cortrolled method and an automated approac for segmen



simpli cation. Possibleapplicationsinclude exible editing, wherein, the user
can lower the resolution of a curve to allow for easierediting, sincethere are
fewer points to manipulate. To view the nal result, a ner sequencef points
can then be generated,for the curve segmen (Figure 3).

{ View dependent rendering: sometimesit is desirableto re ne a region
of a curve selectiely. For view-dependert rendering, a segmen of a curve
can be shown close-up,as a ner set of points, while the remainder of the
curve can be kept at a lower resolution (Figure 4).

{ Progressiv e Transmission: when a curve is transmitted over a network,
a low resolution curve segmen followed by correction information are incre-
mentally sent to get the higher resolution portion.

A multiresolution represenation providesa uniform framework that addressesll
theseproblems,if applied to the whole curve. It is usefulto be ableto manipulate
the completecurve. An alternativ e approad is a progressie curve represenation
that is basedon edgecollapseand vertex split operations. This approac can be
applied locally to change and enhancea portion of a curve. However, it is not
basedon subdivision curves,that are very important in computer graphics.

In this work, we introduce a new framework that replacesvertex-split and
collapse operations based on reverse subdivision with reconstruction and de-
composition operations. To achieve this, local lters are usedand applied non-
uniformly to curves,to do reversesubdivision. This hasthe advantage that the
resulting curve can be created with high and low resolution segmes simulta-
neously In this work, local clusters with many points are replaced by clusters
with fewer points, approximated using least-squaresthat are a geometric good
t to the original group of points.

Section2 describespreviouswork. Section3 outlines details of how decompo-
sition and reconstruction matrices are derived. Section 4 demonstratesapplica-
tions of this work. Section 5 illustrates the data structure and algorithms used.
Section 6 shows results. Section 7 summarizesthe main conceptsof this researt
and proposessomepossiblefuture work.

2 Previous Work

In this section, somerelevant badkground work will be described, which includes
subdivision, reversesubdivision and progressiwe curves.

2.1 Subdivision Curv es

Subdivision curves start with a set of coarsepoints ck and generate a larger
set of points ck*?, using a subdivision matrix P. This processis repeated a
nite number of times to produce the ner points. By successie application of
subdivision, a hierarchy of curvescan be obtained, which convergeto a smooth
curve. Subdivision can be stated by:

Pc = ¢t 1)



Chaikin [3], Faber[4], Cubic B-Spline[16], Dyn-Levin-Gregory curves[5] are alll
example of subdivision curve sthemes.The rst three subdivisions are spline-
basedand are all examplesof uniform knot insertion. For these curve schemes,
subdivision reversal can be studied as uniform knot removal. There is other
interesting work related to generalknot removal [11].

An exampleof cubic B-spline subdivision schemewill be described. Given an
initial cortrol polygon cX. A new re ned cortrol polygon ck*?! is created with
new points on the edgesof the given polygon and with the given polygon vertex
points in adjusted positions. The new points on the edgeof the original cortrol

polygon are called &, . ™ are the vertex points of the cortrol polygon. ¢,

& and the cubic subdivision matrix, P, are:
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The limit curve of this subdivision is C? and it will be exactly the cubic
uniform B-Spline curve de ned by the initial control polygon[17].This is one of
the most important curve schemes.The work in this researt builds on the cubic
B-Spline subdivision scheme. Nevertheless,the approach may be built on other
subdivision schemesin a similar way.

2.2 Multiresolution Curv es

Multiresolution (MR) is a represeniation which allows the userto changea high
resolution to a lower one, in such a way that the original data can be recon-
structed correctly. MR can be consideredas a generalization of subdivision. A
convertional approad to obtain an MR represettation is basedon wavelets[15].
Another approac to construct MR is using reverse subdivision [9,2,1]. which
converts a high resolution approximation to a lower one, while simultaneously
storing approximation-error (detail) information in a space-e cient manner. The
high resolution approximation is recoverable by subdividing the lower resolution
approximation and adding detail information. Both their operations are simple
and fast. Figure 1, shavs an MR structure. It shows an outline of an owl. The
left-most imageis a given ne setof points, while the middle and right-most im-
agesare successiely coarserapproximations. The usercan easily switch between
the ne and coarseimageswhen there is an MR represenation.



Fig. 1. Subdivision and reverse subdivision

To create MR structures, four matrices A, B,P and Q must be found, whose
rows provide lters for decomposition and reconstruction. Assume that the
points for a curve are given. Denote them by c** (n points). They will be
referred to asthe ne data. It may be of interestto nd an approximate set of
m coarsepoints cX (where m < n). By applying A, cX is obtained:

c = Ac*? @)

Alisanm n matrix. In order to have an accurate reconstruction of ck*1,
the error terms of the approximation must be stored completely, as details. The
details (d*) are captured as:

dk - Bck+l (3)

A and B provide the decomposition Iters. Decomposition is the processof
splitting ne data into a low resolution part and details. The original data can
be recovered using two matrices P and Q, providing the reconstruction lters.
The reconstruction phaseis as follows:

Pck + Qd¥ = ck+1 @)

2.3 Progressiv e Curv es

A progressive mesh[7] is an approad for constructing levels of details of meshes.
It can also be used for curves. It is based on edge-collapseand vertex-split
operations. An initial ne sequenceof points can be simpli ed into coarsepoints
by applying a sequenceof edge-collapseoperations. The inverseof a collapseis
the vertex-split, which reproducesthe ne meshfrom a coarseone.An important
issue that distinguishes the work preseried in this work from a simple edge
collapseoperation is that a number of points are replacedby a new point, which
is a least-squareapproximation. Simple edgecollapsechoosesa new point that
is just conveniertly chosenon the collapsededge.

Progressiwe curveshave many similarities to multiresolution curvessinceboth
of then store simpler structures and details. Both approacesallow the userto



changebetweencoarseand ne represenations. A detailed discussionof the dif-
ferencebetweenboth, in relation to global MR can be found in [7]. The frame-
work presered in this researt), is a combination of MR and the progressiwe
structure. Lik e progressiwe structures, the usercan apply the decomposition and
reconstruction operation on any portion of the curve. However, the decomposi-
tion and reconstruction operations in this work are basedon subdivision and its
reverserather than vertex split and collapse.As a result, a non-uniform distri-
bution of points can easily be obtained, if needed,as showvn in gure 2(b) all
MR points are obtained by local approximation basedupon least squaresin a
local area. By cortrast, corvertional MR lters must be applied uniformly on
all the data points.

3 Progressiv e Structures Based on Multiresolution

In this researd, a decomposition and reconstruction approach has beenapplied
using MR lters to a portion of a curve. We have selecteda MR method con-
sistert with the cubic B-spline subdivision [2] for this paper, but the approad
can be usedfor other subdivisions. In this case,the minimum non-trivial length
of curve portions to collapseis v e for this work, but the approac can be used
for other subdivisions. A sequenceof v e points (ck*1) from the ne points are
changedto three coarsepoints (c¥), during decomposition:

k+1 _ k+1., k+1, k+1. k+1. k+1
c =[co "ier e e e ]

kK _ rak. k. ok
¢ = [cg.cC1;C3]

To presene cortinuity betweensegmets, c§ must be equal to c('f,* 1 and ck

must be equalto ck™1. ck*1  ck*! and ¢k must be collapsedto a new point
ck located in a best least squaresposition determined from ck*1 points. This
conversionmeansthat two points are removed for any oneof the curve segmetts.
The proceduremay be repeated for eat curve part, asneeded.To allow for full
reconstruction, it is necessaryto keep some additional information, as details.

In this case,two details, d§ and d¥ must be stored:

d* = [dS; dY] (5)

For this scheme, the four matrices A, B, P and Q, described in section 2.2,
needto be found. In order to construct these partial and local Iters for the
speci ¢ portion of the data, we use and manipulate the generaltechnique that
appearedin [2]. P is chosenas a small subdivision matrix for cubic B-spline
that corverts three coarse points to v e ne points. This rst row and last
row of P have been selectedas the identity rows to keepthe rst and the last
points unchanged (c§ and c ). The other rows comefrom standard subdivision
matrices.



Consequetly, P is known and other matrices A, B and Q must be con-
structed consistert with P. In order to guarantee the full reconstruction of ne
data from coarsedata and details, the matrices must satisfy the bi-orthogonality
condition [15] which is:

A 10
B "Q = o

In addition, it is preferredthat the A matrix in Equation 2 producesck asa
minimizer of the problem:

min jic***  Pckjj (6)
C

This guararteesthat the details stored are small values. All theseconditions
are transformed to linear equations [2] and the solutions provide the matrices
as:

2 3

L0000t siiue
A=4 2 5 in%°:B= B %P ¥ 7}
0 000 1 72 24 18 24 12

2 3 2 3

100 0 O

11p 0 1

P = i%l Q= 15 15

8%? ’ 28 28

011 10

001 00

These matrices together with equations (2), (3) and (4) form a local MR
represertation that can be used for the decomposition and the reconstruction
operations on the points and detail information of ck*?1, ¢k and equation (5).

4  Applications

The given progressiwe structure that is basedon multiresolution has several ap-
plications such asscancorversion, exible editing, view dependert renderingand
curve compression.There are other techniques available for these applications,
however our technique hasthe exibilit y of the progressiwe structure, aswell as
consistencywith multiresolution and subdivision methods (Figure 2(c,d)). This
exibilit y is due to decomposition and reconstruction operations that are based
upon least squares(Equation 6). It is possibleto chooseany set of v e succes-
sive points to collapse,consequetly, the resulting coarsecurve doesn't necessary
have a uniform distributed set of points (Figure 2 (f)), however the details are
meaningful (as can be seemby comparing Figure 2(c) to 2(d)), sincethey come
from multiresolution Iters. An important advantage over simple collapse/split
progressiwe curvesis that there is the possibility of using the subdivision scheme



Fig. 2. (a) An eaglecreated with 3156 points. (b) A decomposedeagle.(c) Image (b)
reconstructed using details. (d) Image (b) reconstructed by subdivision alone without
details. (e) Image (a) after removing points using the metric described in section 4.2.
The total number of points are 50. (f) Image (a) with 50 points, generated using the
simple remove one and keepone algorithm. (g) A portion of image (a) is decomposed.
(h) This image consists of three dierent segmerts, a high resolution part, a lower
resolution part and a portion that was decomposedand reconstructed without details
( the area selectedby the window)

to partially enhancethe curve (Figure 2(d)), becausethe local multiresolution
Iters are constructed from the reversesubdivision.

A crude, simple approac to choosepoints to decompose,would be to select
them at random. However, using a more sophisticated approac will more likely
guarantee that the resulting curve represerts the initial scannedpoints. Another
useful consideration is to provide a user-corrolled method as well as an auto-
mated approac. The two methods usedin this work, to eliminate redundart
points in scanneddata, include the window selectionand metric approad.

4.1 Decomp osing a Curv e Segment Using Windo w Selection

This method allows the userto cortrol which portion of a curve is decomposed.
All points in this part of the curve are divided sequetially to groupsof ve
points. Then the decomposition operation is applied to them. This processis
repeated until a certain number of points desired, is reached. An example is
showvn in gure 3. This diagram illustrates an application to edit Arabic fonts.
The user moves a window over the portion of the letter that is to be edited.
This segmen haslots of cortrol points, which makeit tediousto selecta specic
point. The points in the selectedregion are then decomposed.The usercan then
manipulate the corntrol points and elongatethe letter. The edited segmen of the
font is then reconstructedto ner points, to visualize the nal resulting letters.
That is, c** 1 are decomposedto ck and d¥. The c points are edited to produce
altered points €, a new version of the ne curve is producedas Pe* + QdX.



Fig. 3. (a) Arabic font created with 3095 points. (b)The user selects a portion of
the font. The number of points in the selected region are reduced. (¢) The letter is
modi ed in the areawith reduced points. (d) The decomposedsegmer of the curveis
reconstructed.

4.2 Metric Ordering

This is an automated approad, to reduce points that represen a segmen of a
curve, using a metric. Examples of possiblemetrics can be found in [8,7]. The
metric usedin this researd is basedon curvature. Areas of lower curvature are
decommsedand higher energy portions are presened. The curvature is calcu-
lated by nding the distancesand angle betweena point and it's neighbors. The
metric valuesm¢; calculated for point c¢; can be written as:

Mc1 = W j J+ We(€ + €1) (7)

e and e; arethe Euclidean distancesbetweenpoints ¢; and it's neighbors ¢y
and c,. The weights w and wy allow the userto tweak the metric asdesired,to
give either distance or angle criteria, more importance. All weights w and wy,
usedin this researd were setto 0.5.

Figure 2(e) shows results using the metric. The original eagleis made up of
3156 points. Using the metric, segmets of the curve are repeatedly decomposed
until 50 points remain. For comparison purposes,a simple scheme is used to
reduce the original eagleto 50 points (Figure 2(f)). This simple stcheme keeps
one point and removesthe following point. Again the processis repeated until
50 points remain. As can be seemfrom the gure, usingthe metric in equation 7
meansthat ne details such asthe sharp hump on the eagle'sbac, beak details,
the bottom of the wing parts, are all presened. All these details are lost using
the simple scheme (Figure 2(f)).

5 Algorithms and Data Structures

In this sectionthe algorithms and data structures that are usedin the progressiwe
curve are outlined. To implement the window selection casein section 4.1,
it is possibleto use a simple data structure, such as an array. However, the
data structure used, has been designedto work with the metric ordering in
section 4.2. The essetial demand of data managemem, aside from correctly



asswiating d* with cX information, is to keeptrack of the location and order
at which decompositions take place so that reconstructions can take place in
strictly reverseorder to decompositions. The main data structure used, consists
of alinked-list of elemeris (Element List). Each elemer consistsof the following
componerts:

{ Position[3] : an array represering the x,y and z co-ordinatesof a point.
{ Detalls : a data structure that storesdetalils, for the correct reconstruction.
{ Metric Value: a double that is calculated from equation 7.

Details are stored as a ternary tree structure. For the three decomposed
elemernts, two details must be stored, as described in Section 3 and a hierarchy
of all the details is stored. This allows any of the curves, in any level of the
hierarchy to be regeneratedcorrectly. The data structure for the details is given

by:

{ do and d;i: two doublesrepreserniing rst and seconddetails
{ dleft, dmiddle and drigh t : three pointers, oneto a new left detail, middle
detail and a right detail structure.

dleft, dmiddle and dright store details for the ne points, ck*?, ck*?

Two more data structures are needed:

k+1
,csth.

1. A pointer to the Element List : this list is sorted basedon the metric
de ned in section 3. It is neededfor the decomposition stage. The rst
pointer in this list, points to an elemen that should be decompsedwith its
left and right neighbors. During the decomposition stage,thesethree points
areremoved. The pointer list is then updated locally by inserting a new point
at the suitable location. This processis repeated, until a certain percertage
of points is deleted.

2. A stack of indices of the coarse elements: asead elemern is removed,
the index of the new coarseelemert is stored in a stack. This is neededto
reconstruct a curve correctly. As describedin section 4.2, the decomposition
stage selectspoints basedon a metric. Any v e points can be chosento be
decomposedto three coarsepoints. During the reconstruction phase,it is
crucial that the samethree points be used,in order to return to the original
VvV e points, this is guaranteed with the stadc structure.

6 Results

To demonstrate the progressive curve, se\eral examplesare shovn. For Figure
1, the structure hasbeenreversesubdivided globally asin [2]. The left diagram
isa ne meshand the coarserepresertation is shavn in the middle and a coarser
represenation is shavn in the right-most gure. Figure 2 (b) shows the eagle
outline. The gure shows ne set of points, coarsepoints, a reconstructed curve
using details (P ¢ + Qd*) and without details (Pck alone). The gure alsoshows
arepresenation createdwith 50 points, generatedby using the metric described
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in section 4.2 and by using the simple keep one and remove one approac for
comparison(Figure 2 (e) and (f)). As describedin section 4, resultsin 2 (e) are
superior to resultsin 2 (f). Lastly the useof the window as a selectionmedium is
shown. Figure 2(h) shows a curve created with three di erent segmers. Figure
3 illustrates exible editing, using the window selectionfeature. Figure 4 show
the stagesto view-dependert rendering. Lastly, an example of scanneddata is
shown in Figure 5.

Fig. 4. View dependent rendering. (a) The lotus o wer with a ne set of points. (b)
The o wer was decomposedand an area selected, using a window was reconstructed.
(c) A close-up of the curve componert selectedby the window in (b)

Fig. 5. High and lower resolution of scanneddata

7 Conclusions

This work combinesboth multiresolution and progressiwe structures together. A
multiresolution systemhasbeenconstructed usingthe cubic B-spline subdivision
approac. The decomposition and reconstruction operations are derived from the
multiresolution Iters. The e ciency of the method is preseried. Although, this
work is basedon the cubic B-spline subdivision, The approac can be applied
to any other curve subdivision schemesud as Chaikin and Dyn-Levin-Gregory.
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Generalization of this work to surfacescan be consideredas a possibledirection
of future work.
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