Real-Time Super Resolution
Contextual Close-up of
Clinical Volumetric Data

Torin Taerum¹, Mario Costa Sousa¹, Faramarz Samavati¹, Sonny Chan¹,4, Ross Mitchell¹,2,3,4

Departments of ¹Computer Science, ²Radiology, ³Clinical Neurosciences,
University of Calgary

⁴Seaman Family MR Research Centre
(Advanced Medical Image Processing and Analysis Lab)

Eighth Annual Eurographics/IEEE-VGTC Symposium on Visualization (EuroVis 2006)
Results using our System

Generated on an AMD Athlon 2500 with 1.25 GB of RAM and using OpenGL/ATI Radeon 9550 graphics card
Figure 3 in the paper
Low-resolution
(while interacting in real-time with volume)

High-resolution
(after finishing interaction)
ROI: vessels
Video

• File “taerum-eurovis-06-video”

• Note that video play is not a precise representation of the actual fps performance during capture

• The video plays at 30 fps while system performance ranged from 3-15 fps
Figure 3 in the paper

No subdivision
Order 3 subdivision
Order 4 subdivision

Figure 3 in the paper
Silhouette-enhanced
3D color fluorescent confocal microscopy image of kidney cells, rendered with maximum luminosity projection.

Data provided by Dr. Pina Colarusso, Dept of Physiology and Biophysics, Faculty of Medicine, University of Calgary
Research and Development Support

• Natural Sciences and Engineering Research Council of Canada
• iCORE
• Multiple Sclerosis Society of Canada
• Alberta Heritage Foundation for Medical Research.
• Calgary Scientific Inc.
 www.calgaryscientific.com